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Abstract: Recent European data facilitate an epidemiological investigation of the controversial
cannabis–cancer relationship. Of particular concern were prior findings associating high-dose
cannabis use with reproductive problems and potential genetic impacts. Cancer incidence data
age-standardised to the world population was obtained from the European Cancer Information
System 2000–2020 and many European national cancer registries. Drug use data were obtained
from the European Monitoring Centre for Drugs and Drug Addiction. Alcohol and tobacco con-
sumption was sourced from the WHO. Median household income was taken from the World bank.
Cancer rates in high-cannabis-use countries were significantly higher than elsewhere (β-estimate
= 0.4165, p = 3.54 × 10−115). Eighteen of forty-one cancers (42,675 individual rates) were signifi-
cantly associated with cannabis exposure at bivariate analysis. Twenty-five cancers were linked in
inverse-probability-weighted multivariate models. Temporal lagging in panel models intensified
these effects. In multivariable models, cannabis was a more powerful correlate of cancer incidence
than tobacco or alcohol. Reproductive toxicity was evidenced by the involvement of testis, ovary,
prostate and breast cancers and because some of the myeloid and lymphoid leukaemias implicated
occur in childhood, indicating inherited intergenerational genotoxicity. Cannabis is a more important
carcinogen than tobacco and alcohol and fulfills epidemiological qualitative and quantitative criteria
for causality for 25/41 cancers. Reproductive and transgenerational effects are prominent. These
findings confirm the clinical and epidemiological salience of cannabis as a major multigenerational
community carcinogen.

Keywords: cannabis; cancer; epidemiology; causal inference; genotoxicity; epigenotoxicity;
carcinogenesis

1. Background

Whilst the link between tobacco and alcohol and several cancer types is now well-
accepted, the relationship between cannabis and cancer remains unresolved [1,2]. As com-
mercial considerations continue to advance, cannabis liberalization and increase dosages
and availability internationally the impetus for the provision of useable public health
information on this association becomes correspondingly increasingly important [3].

The cancer for which the strongest evidence exists is testicular cancer [1,2] where
the link has been replicated in four major longitudinal studies [4–7] and the association
is widely recognised to be powerful and causal [1,8–16]. One meta-analysis found the
relative rate of testicular cancer to be elevated 2.59-fold (95% C.I. 1.60–4.19) after cannabis
exposure [10], and dose response effects have been described for frequency of use [5,7],
total dose exposure [4], long-term use [7] and age of first onset [5]. The issue of testicular
cancer is important as the average incubation period of the preclinical oncogenic phase in
this disorder is about 34 years, which is greatly accelerated by cannabis exposure to about
14 years [17]. Moreover, as this tumourigenesis occurs in the male germ cell epithelium,
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the clear possibility exists for the transgenerational transmission of genetic or epigenomic
damage to following generations. Moreover, it is not inconceivable that the pro-oncogenic
effect seen in the testis may also be occurring in other tissue beds.

Cannabis has also been shown to be an important factor leading to hepatic
cirrhosis [18–20] and is recognised as being involved in hepatocarcinogenesis, particularly
in the context of cocarcinogens such as chronic hepatitis B and C infection [18]. Cannabis has
also been shown to be powerfully pro-oncogenic by multiple cellular, vascular and immune
mechanisms in the liver and that its pro-oncogenic effects occur three orders of magnitude
(over 1000-fold) lower than those of its anti-oncogenic effects [21]. Epidemiologically this is
important as the rise in hepatocarcinogenesis in many places is widely attributed to altered
ethnic patterns and viral infection rates [22] with the impact of increasing cannabinoid
exposure typically overlooked.

Cannabis exposure has also been linked with cancers of the brain [23], head and
neck [24,25], larynx, lung [26–28], urothelium [29–31], prostate [32] and cervix [32]. How-
ever, these reports are not without controversy. For example, amongst tumours of the upper
aerodigestive tract, both positive [24,26] and negative [33,34] reports exist and the issue
has been considered to be undecided [1,2]. Cannabis has also been linked with childhood
cancers after parental exposure in acute non-lymphoblastic leukaemia [35,36], neuroblas-
toma [37] and rhabdomyosarcoma [34,38], thereby documenting a clinically significant
intergenerational transmission of genotoxicity [39,40].

Important additions to this classical literature have occurred more recently with
the demonstration in the North American context that the rising community cannabis
consumption is linked with the major tumour of childhood acute lymphoid leukaemia, that
increased cannabis use is a major driver of the 50% rise in total paediatric cancers [41], and
that community cannabis exposure has been linked with cancers of the breast, pancreas,
liver, thyroid and acute myeloid leukaemia. Liver cancer incidence has been noted to be
rising in many places [22] and pancreatic cancer mortality has also been noted to be rising
in recent years [42,43].

In addition to carcinogenesis, congenital anomalies (birth defects) form another major
metric of genotoxicity observed clinically [44]. It is therefore highly relevant that tripling
levels of community cannabis exposure have been linked with a tripling of total birth defect
rates in Canada’s northern provinces, and increased levels of cannabis exposure have been
linked with higher rates of dozens of congenital anomalies in Hawaii, Colorado, Australia
and the USA [44–49], affecting most major organ systems (cardiovascular, gastrointestinal,
genitourinary, respiratory, neurological and body wall), including limbs and chromosomal
anomalies, trisomies and monosomy [44–49]. Much data have come to light recently as a
result of large studies of national and transnational datasets on this subject [44,46,50–66].

In a similar way, a series of recent studies has linked cannabis with accelerated ag-
ing at the organismal [67], cardiovascular [68], epigenomic [69], metabolic [70–82] and
immunomic [83–91] levels and in regard to the heightened incidence of morbidity [67] and
mortality [92–103], which accompanies aging syndromes, all of which amplify our under-
standing of the severe clinical impact and long-term magnitude of cannabinoid-related
genotoxicity [104–109].

The European context provides an ideal situation to investigate the cannabis–cancer
link further, given the availability of data across all relevant fields. The subject of European
community exposure to cannabis has been relatively confusing and complex, but with
the recent publication of a major public health resource, country-wide trends in cannabis
exposure have been greatly clarified [110,111].

One of the most exciting fields of modern enquiry in the basic sciences relate to the in-
creasingly powerful insights being gained into the regulation of genomic expression and its
modulation within the cell nucleus [112–128]. Whereas many studies in recent decades have
focussed on genomic or transcriptomic or epigenomic levels of monitoring gene activity,
some of the deepest insights and many of the leading current papers are actually focussing
on the cooperation and coordination between these levels and others to coordinate and con-
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trol gene expression within the 3D space of the nuclear architecture [129]. Gene expression
has been shown to be controlled by the looping of chromatin through cohesin rings with
boundaries formed usually by CTCF, which control the access of enhancers to promoters,
acting both in cis and in trans. Recent epigenomic studies have shown that cannabis dis-
rupts this machinery at many levels, including the synthesis of histone proteins [130–134],
interference with the basic epigenomic machinery for histone and DNA methylation and
demethylation and DNA acetylation, active disruption of energy-dependent modification
of nucleosome positioning through SMARCA2/4, the disruption of both energy generation
in the cell, the actin and microtubular cytoskeleton and its dependent epigenome, as well
as the disruption of both CTCF and the cohesin ring motors [135–138]. All of these changes
can be expected to be pro-oncogenic [138–146]. In particular, cannabis has been shown to
widely disrupt the epigenome in many respects and cause widespread genomic demethyla-
tion, which is a change very characteristic of epigenomic aging [105,108,147–152]. Indeed,
one very insightful longitudinal study recently demonstrated 810 cancer-related hits in
its spectrum of differentially methylated genes [137]. Hence, major new advances in the
cannabinoid epigenomics [135,153–161] have ushered in a whole new paradigmatic ad-
vance in our understanding of the widespread perturbation of normal nuclear physiology
by the cannabinoids apparently acting as a class-wide effect [108,109,132,136,162–166].

The present study was based on the hypothesis that the oncogenic effects of cannabi-
noids identified in vitro would extend beyond testicular cancer to an undetermined number
of other tumour types. This paper therefore sought to study in overview the association
between community cannabinoid exposure and clinical cancer incidence across Europe for
forty different cancer types in recent decades in bivariate and multivariate frameworks, to
determine effect sizes and public health impacts, to ascertain the potentially causal effect of
these associations by the quantitative techniques of formal causal inference and to compare
population health findings in Europe with those from North America [167–169]. Given
the high density of cannabinoid receptors in the reproductive tracts, the myriad important
functions of cannabinoids in these tissues in both sexes and the importance of potentially
inheritable genotoxic effects [170,171] and the above-cited findings relating to reproductive
tumourigenicity were a particular focus of interest. Based on the findings of a similar anal-
ysis of trends in the USA, we hypothesised that cannabis would be positively associated
with eight cancers—breast, liver, thyroid, pancreas, oropharynx, kidney, melanoma and
acute myeloid leukemia—amongst others [53].

Therefore, the four basic questions investigated in the present study were:

(1) Is there evidence for a link between cannabinoid exposure and patterns of cancer
incidence in Europe?

(2) How do these findings compare with similar data from elsewhere?
(3) How do the putative carcinogenic effects of cannabis compare to those of the known

carcinogens, tobacco and alcohol?
(4) Was there evidence of inheritable tumourigenicity or cancerogenicity?

The basic hypotheses, investigative questions and analytical procedures were deter-
mined prior to commencing the analysis.

2. Methods
2.1. Data: Cancer—Annual Country Rates

Cancer data were taken from the Cancer in Five Continents (CI5) dataset publicly
available from the International Association for Research on Cancer (IARC) and the Eu-
ropean Cancer Information Systems (ECIS) website [172,173]. Data for 26 cancers were
provided directly from ECIS and the included age-standardised rates (ASRs) calculated
for the world-standardised population for 1973 (ASRw) [174–176]. The cancers for which
ASRw rates were provided directly from ECIS were: all cancers (excluding non-melanoma
skin cancer), anus, bladder, brain and central nervous system, female breast, cervix and
corpus uteri, colorectum, gall bladder, Hodgkin lymphoma, kidney, larynx, liver, lung,
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melanoma of skin, multiple myeloma, non-Hodgkin’s lymphoma, oesophagus, vulva and
vagina combined, ovary, pancreas, penis, prostate, stomach, testis and thyroid.

The ECIS data collection essentially terminated in 2012, albeit it is understood that
the archivists there have recently issued a further call for data from member registries. In
order to update the centrally available data resource, we also contacted the national cancer
registries for each of the European nations as described in the Results Section and accessed
specific data downloads from them and also their publicly available online data materials.

It is appropriate to offer some explanatory comments on terminology. Many registries
provide data on “all cancers”. This was studied as a listed type of cancer and appears on
many of the tumour lists in this report. Along with “all cancers” many registries list a group
called all cancers (ACs), but not non-melanoma skin cancer (ACnNMSC), a grouping which
omits small and superficial cutaneous malignancies which are not usually considered as
constituting a clinical cancer syndrome per se. This second group is referred to specifically
where that is the group being referenced by the cancer registry concerned. That is, we were
faithful in this report to continue the nomination supplied in the data provided to us from
the registries.

A second point of confusion relates to the designation of “oropharyngeal cancers”,
both local carcinoma of the oropharynx (International Classification of Diseases version
10, ICD10) Code C10 and, in some cases, all of the tumours of the head and neck (ICD10
C00-C14). It appears that both groups have been designated as oropharyngeal tumours by
different registries. Where we were provided information as to which of these two groups
were indicated, we have been faithful to preserve this in the present analysis. We refer to
local tumours of the oropharynx itself as “oropharynx” in this report, whilst any reference
to the broader category of head and neck cancers, we denote as “Oropharynx_Broad”,
which is a reference to the broader sense in which this term is used.

2.2. Substances—Annual Country Estimates

Tobacco and alcohol consumption was downloaded from the Global Health Obser-
vatory of the World Health Organisation [177]. The tobacco metric was the percentage of
the population exposure to tobacco. The metric of alcohol consumption was the number
of litres of pure alcohol consumed annually per capita (over 15 years of age). Data for
exposure to various addictive drugs were taken from the European Monitoring Centre for
Drugs and Drug Addiction (EMCDDA) website [178]. This data extraction was facilitated
by a recent report, which presented a thorough exploration and extraction of the EMCDDA
data on cannabis and other substances of concern [111]. Cannabis use metrics, which were
available, included last year’s and last month’s cannabis exposure. Near daily/daily use
data were also available. Data on the ∆9-tetrahydrocannabinol (THC) concentration of
cannabis herb and resin were also available. EMCDDA past-year-use data were accessed
for amphetamine and cocaine exposure.

2.3. Household Income

Median household income data were sourced from the World Bank [179].

2.4. Data Analysis

Data were processed in R-Studio version 12.4.1717 (2021), which was based on R
version 4.1.1 (2021) [180]. The analysis was conducted in February 2023. Data were
manipulated using dplyr from the tidyverse [181] and graphs were drawn in ggplot2 [181],
also from tidyverse. Graphs are presented in ordered metrics. Graphs were arranged using
R packages ggpubr, cowplot and patchwork [182–184]. Maps were drawn with sf (simple
features [185]) and rnaturalearth [186] and coloured with palettes from viridis, viridis light
and RColorBrewer [187,188]. Colorplaner was used to generate the bivariate fill palettes
for bivariate maps [189].

Data were log-transformed as guided by the Shapiro test. On occasion, p-value
adjustment for multiple testing was conducted using the false discovery rate (FDR denoted
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as P-FDR) adjustment of Benjamini and Hochberg [190] or by the method of Holm [191]. The
Holm method, which is the more stringent of the two methods, was preferred throughout
and is listed in many tables. Correlation matrices were compiled in the R package WGCNA
which tolerates missing data [192,193]. Correlograms were generated with Corrplot [194].

For the categorical analysis, substance exposure cohorts were broken into higher
compared to lower exposure groups. Indices for prevalence ratio (PR), attributable fraction
in the exposed (AFE) and the population attributable risk (PAR) were calculated in a
modified version of the R package epiR customised specially to handle the very large
integers involved in the multidecadal European population by Professor Mark Stevenson
(version 2.0.57) [195]. The R package collapse was used to access the ‘not match’ function
for data manipulation and subgrouping [196].

Multivariable modelling was employed to compare the adjusted effects of the different
covariates. Mixed-effects models were performed using the nlme R package with the
cancer registry as the random effect [197]. Panel regression was performed using the
pooled approach across space and time simultaneously (“twoways” method) using the plm
package from R [198]. This technique was particularly useful for generating time-lagged
models. Model prediction was performed using the predict function from the stats library
which ships with Base R [180]. Due to the constraints imposed on regression techniques
by missing data, the number of cancers studied by multivariable techniques was less than
that analysed in bivariate techniques as described in Results. A panel of 36 cancers was
studied with one analytical pass using purr–broom–predict workflows from tidyverse,
broom and R-base [181,199,200]. The model Akaike information criterion (AIC) was used
to measure the goodness of fit to predicted data. Models were compared using ANOVA
tests in package stats. Data were listed as mean ± standard error of the mean (S.E.M.).
p < 0.05 was considered statistically significant.

2.5. Missing Data: Interpolation

Linear interpolation was used on the substance use and income datasets. Another
alternative to the significant missing data problem was multiple imputation; however,
multiple imputation methods were not available at the time of writing for mixed-effects or
panel model analysis.

2.6. Causal Inference

The formal methods of causal inference were utilised as follows for positive asso-
ciations following standard public health practice [201]. All panel models were inverse-
probability-weighted. Inverse-probability weighting has the effect of transforming an
observational study into a pseudo-randomised controlled study by evening out exposures
across study groups. It was performed in this analysis using the ipw R package [202].
Secondly, minimum E-values (expected values) were widely employed. The E-value esti-
mates whether findings are robust to potential confounding. It measures the bidirectional
cross-correlation required of some hypothetical unknown confounder variable with both
the exposure of interest and the outcome of concern to explain an apparently causal ef-
fect [203–207]. Its 95% lower confidence bound is given by the minimum E-value (mEV).
mEVs in excess of 1.25 are quoted in the literature as potentially indicating causal processes
and hence were used as criteria in the current analysis. The mEV for the tobacco—lung
cancer relationship is nine, which is described as being very high [208]. E-values were
calculated for this study using the EValue R package [209].

2.7. Ethics

Ethical permission for this study was granted from the University of Western Aus-
tralia Human Research Ethics Committee on 24 September 2021 with HREC Number
2019/RA/4/20/4724.



J. Xenobiot. 2023, 13 328

3. Results

The outline for the presentation of the Results Section is as follows:

3.1 Data
3.2 Bivariate Analysis

3.2.1 Continuous

Graphical
Tabular analysis
Bivariate conclusions
Correlation analysis
Mapping review

3.2.2 Categorical

Tabular analysis
Graphical analysis

3.3 Multivariable panel regression analysis

3.3.1 Additive

Mixed-effects model
Panel model—additive

3.3.2 Interactive panel modelling

No temporal lags (unlagged)
Two-year temporal lags
Four-year temporal lags
Six-year temporal lags

3.3.3 Multivariable conclusions

3.1. Data

Sources of data on organ-specific rates of cancer standardised to the world population
of 1976 were obtained from the European Cancer Information System (ECIS) dataset
and from the various national cancer registries and their online datasets, as listed in
Supplementary Table S1. Raw data sources and processed input files and files used for the
various analyses are also provided in the online Mendeley data repositories as mentioned
in the Methods Section. A total of 47,920 age-adjusted rates were obtained from 24 nations
and 130 regions. Other details relating to drug exposure, cancer type and income are shown
in Supplementary Table S2. This table lists the sociodemographic and drug exposure
datasets for both the bivariate and multivariable studies. It also provides the International
Classification of Diseases Version 10 (ICD 10) Codes of interest for each cancer of concern.

Supplementary Figure S1 shows the rates of different groups of cancer across time.
Most are shown to be stationary, some are rising and a few are falling. It is important to
note in reading this figure that the ordinate axis is a log scale and so changes are arguably
more marked than they appear. Imputed rates of substance exposure by country are shown
in Supplementary Figure S2 with the data jittered to assist with illustration. The overall
rates of tobacco use appear to be falling whilst the rates of other substances are variable.
Interpolated rates for the various cannabis metrics are shown in Supplementary Figure
S3. The four rates which were available were: (1) last month’s cannabis use (shown as LM.
Cannabis in some figures), (2) daily or (3) near-daily cannabis use and (4) the THC content
of cannabis herb and resin. In general, most metrics of cannabis use rose across this period
with the notable exceptions of Poland, Denmark and Hungary, where rates of last month’s
use declined, and Bulgaria, Luxembourg and Romania, where the THC content of cannabis
also declined.
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3.2. Bivariate Analysis
3.2.1. Continuous Analysis
Graphical Analysis

Supplementary Figure S4 shows the time trend of 41 different cancers ordered by the
declining slope of their regression curves with one panel for each cancer type. The rates of
some cancers are rising, many are stationary, whilst a few decline. The ordinate scale is
again logarithmic. In this figure, the notation “All Cancers nNMSC” (ACnNMSC) refers to
all cancers with the exception of non-melanoma skin cancer.

Figure 1 shows the relationship of many cancers to tobacco exposure. The figure clearly
shows that fifteen cancers are identified as being linked with tobacco exposure, all of which
have previously been identified in epidemiological studies [210]. All cancers, ACnNMSC,
lung cancer, larynx, cervical, oesophageal and cervical cancer are shown to be tobacco-
related. This finding confirms this methodology as a way to look at cancer incidence from
the real-world epidemiological data when controlled studies of risk exposure would not
be possible.

Figure 2 plays a similar role for alcohol exposure. Again, the cancers seen to be
rising here are well-known to be alcohol-related, a finding which further confirms the
methodology. Again, all cancers, ACnNMSC, breast cancer, oesophageal cancer and chronic
lymphoid leukaemia (CLL) appear to be alcohol-related.

Figure 3 plays a similar role for last month’s cannabis exposure. Cancers including
hepatocellular cancer, laryngeal cancer, lung and breast cancer appear to be related to last
month’s cannabis exposure. Figure 4 performs this role for daily cannabis exposure. Again,
hepatocellular cancer and also thyroid, liver, non-Hodgkin’s lymphoma and breast cancer,
amongst others, appear to be related to this exposure.

Figure 5 shows the cancer rates against the THC concentration of cannabis herb. Both
all cancers and ACnNMSC are rising strongly against this metric, along with lung, kidney,
pancreas, testis, cervical, oesophageal, lymphoid leukaemia, anal, vulva and Kaposi tumours.

When rates of cannabis resin THC concentration is considered as the denominator,
cancer rates appear to be less strongly associated with this metric (Figure 6).

When amphetamine exposure is considered, the strongest association appears to be
with female genital tract cancers (Supplementary Figure S5). When cocaine is considered,
several cancers appear to be associated with rising cocaine use (Supplementary Figure S6).

Tabular Analysis

The slopes of these regression trends and their statistical significance may be formally
considered. A table of sequential model results from the purr–broom workflow in R is
shown in Table 1 for tobacco exposure. These results confirm that 17 cancers are significantly
related to tobacco exposure, confirming the appearances shown in Figure 1. This number
drops to 14 after adjustment for multiple testing. In all cases, the minimum E-values
are elevated above unity (1). Both all cancers and ACnNMSC have E-value estimates
exceeding 1.25, which is considered to be the threshold for causal association [204]. When
these data are studied by mixed-effects regression, only seven tumours are found to be
significantly tobacco-related (Supplementary Table S3). Importantly, the E-value estimate
for the tobacco–lung cancer relationship is noted near the top of this Table as 1.34, and its
lower bound is 1.32, both of which exceed the threshold for causality.
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Figure 2. Rates of selected cancers by alcohol exposure.
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Figure 3. Rates of selected cancers by last month’s cannabis exposure.
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Figure 4. Rates of selected cancers by daily cannabis use interpolated.
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Figure 5. Rates of selected cancers by THC concentration of cannabis herb.
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Figure 6. Rates of selected cancers by THC concentration of cannabis resin.
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Table 1. Regression modelling results, including slopes, significance levels and E-values for tobacco–
cancer relationships.

Cancer β-Estimate Std
Error p-Value P. Adj. Holm E-Value

Estimate
95% Lower Bound

of E-Value

Non-Seminoma 0.2348 0.0233 5.36 × 10−12 1.34 × 10−10 2.10 1.92

Cervix 0.0533 0.0022 1.01 × 10−112 4.15 × 10−111 1.40 1.37

Lung 0.0259 0.0013 3.51 × 10−75 1.33 × 10−73 1.34 1.32

Stomach 0.0437 0.0022 8.16 × 10−77 3.26 × 10−75 1.34 1.32

Ovary 0.0339 0.0017 3.42 × 10−76 1.33 × 10−74 1.34 1.32

Kidney 0.0288 0.0020 3.90 × 10−45 1.44 × 10−43 1.28 1.26

All Cancers nNMSC 0.0150 0.0012 1.67 × 10−33 5.50 × 10−32 1.27 1.24

Pancreas 0.0247 0.0019 1.19 × 10−38 4.16 × 10−37 1.27 1.24

Corpus Uteri 0.0350 0.0028 1.34 × 10−34 4.56 × 10−33 1.25 1.23

Larynx 0.0202 0.0020 2.26 × 10−23 6.78 × 10−22 1.23 1.20

Prostate 0.0188 0.0019 4.13 × 10−22 1.20 × 10−20 1.22 1.20

Leukaemia 0.0264 0.0030 9.97 × 10−18 2.79 × 10−16 1.21 1.18

All Cancers 0.0132 0.0019 1.95 × 10−11 4.69 × 10−10 1.22 1.18

Oesophagus 0.0205 0.0024 1.24 × 10−16 3.34 × 10−15 1.20 1.17

Seminoma 0.0128 0.0050 0.0160 0.1437 1.38 1.15

Breast 0.0178 0.0039 4.39 × 10−06 7.90 × 10−5 1.14 1.10

Oropharynx 0.0213 0.0096 0.0280 0.1894 1.16 1.05

Leukaemia—Lymphoid −0.0008 0.0028 0.7663 1.0000 1.05 -

Colorectum −0.0018 0.0013 0.1638 0.6553 1.07 -

Brain −0.0063 0.0018 5.34 × 10−4 0.0080 1.12 -

Vulva and Vagina −0.0059 0.0019 0.0021 0.0256 1.14 -

Anus −0.0055 0.0016 8.48 × 10−4 0.0115 1.14 -

Leukaemia—Myeloid −0.0103 0.0046 0.0269 0.1894 1.14 -

Penis −0.0056 0.0017 8.22 × 10−4 0.0115 1.15 -

Non-Hodgkin’s Lymphoma −0.0083 0.0017 1.05 × 10−6 1.99 × 10−5 1.15 -

Bladder −0.0104 0.0018 7.02 × 10−9 1.40 × 10−7 1.16 -

Gallbladder and Biliary −0.0108 0.0027 7.95 × 10−5 0.0013 1.17 -

Ovarian Dysgerminoma −0.0014 0.0030 0.6599 1.0000 1.17 -

Melanoma −0.0145 0.0022 3.22 × 10−11 7.40 × 10−10 1.18 -

Medulloblastoma −0.0023 0.0054 0.6807 1.0000 1.18 -

Testis −0.0117 0.0018 1.98 × 10−10 4.35 × 10−9 1.21 -

Kaposi −0.0081 0.0044 0.0643 0.3213 1.21 -

Vagina −0.0064 0.0025 0.0124 0.1243 1.22 -

Liver −0.0192 0.0027 3.63 × 10−12 9.43 × 10−11 1.22 -

Oropharynx_Broad −0.0172 0.0038 8.05 × 10−6 1.37E-04 1.22 -

Hepatocellular −0.0098 0.0042 0.0237 0.1894 1.24 -

Mesothelioma −0.0291 0.0097 0.0032 0.0351 1.28 -
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Table 1. Cont.

Cancer β-Estimate Std
Error p-Value P. Adj. Holm E-Value

Estimate
95% Lower Bound

of E-Value

Hodgkin’s −0.0160 0.0014 2.24 × 10−28 6.93 × 10−27 1.29 -

Myeloma −0.0175 0.0015 1.06 × 10−31 3.40 × 10−30 1.30 -

Thyroid −0.0390 0.0028 2.04 × 10−40 7.36 × 10−39 1.33 -

Vulva −0.0309 0.0047 3.98 × 10−10 8.37 × 10−9 1.39 -

Table key: β-Estimate—estimate of the regression coefficient; Std. Error—standard error of the regression
coefficient; p-value—significance level; P. Adj. Holm—p-value adjusted for multiple testing by the method of
Holm; E-value—expected value required of some unknown confounder covariate with both the exposure and
the outcome to explain the observed effect; lower bound of the E-value—the 95% lower bound of the confidence
interval of the E-value.

When alcohol is considered in a mixed-effects model, 13 cancers are seen to be signifi-
cantly related to alcohol exposure (Supplementary Table S4). When alcohol is considered
in a series of linear regression models, 19 cancers are seen to be alcohol-related (Table 2).
As shown, this number drops to 17 after adjustment for multiple testing.

Table 2. Regression modelling results, including slopes, significance levels and E-values for alcohol–
cancer relationships.

Cancer β-Estimate Std.
Error p-Value P. Adj. Holm E-Value

Estimate
Lower Bound

E-Value

Oesophagus 0.1388 0.0059 5.92 × 10−108 2.43 × 10−106 1.80 1.75

All Cancers 0.0888 0.0069 3.72 × 10−34 1.12 × 10−32 1.85 1.74

Cervix 0.1395 0.0060 1.39 × 10−105 5.56 × 10−104 1.79 1.74

Prostate 0.0950 0.0048 1.12 × 10−78 4.36 × 10−77 1.70 1.64

Lung 0.0663 0.0036 3.94 × 10−69 1.50 × 10−67 1.66 1.60

All Cancers nNMSC 0.0456 0.0032 4.20 × 10−44 1.47 × 10−42 1.58 1.52

Kidney 0.0750 0.0054 3.29 × 10−42 1.12 × 10−40 1.54 1.48

Leukaemia—Lymphoid 0.0547 0.0091 4.19 × 10−09 9.63 × 10−08 1.61 1.46

Ovary 0.0652 0.0049 6.49 × 10−38 2.08 × 10−36 1.52 1.46

Stomach 0.0711 0.0064 1.65 × 10−27 4.62 × 10−26 1.45 1.40

Pancreas 0.0547 0.0051 2.34 × 10−26 6.31 × 10−25 1.45 1.39

Breast 0.0771 0.0104 1.82 × 10−13 4.72 × 10−12 1.34 1.28

Larynx 0.0332 0.0054 1.05 × 10−9 2.52 × 10−8 1.31 1.24

Leukaemia—Myeloid 0.0517 0.0163 0.0017 0.0284 1.38 1.21

Anus 0.0143 0.0038 0.0002 0.0036 1.25 1.16

Leukaemia 0.0305 0.0083 0.0003 0.0051 1.23 1.15

Corpus Uteri 0.0290 0.0080 0.0003 0.0061 1.22 1.14

Penis 0.0109 0.0038 0.0036 0.0542 1.21 1.11

Melanoma 0.0138 0.0059 0.0200 0.2398 1.17 1.06

Vulva and Vagina 0.0048 0.0044 0.2774 1.0000 1.12 1.00

Non-Hodgkin’s Lymphoma 0.0067 0.0046 0.1458 1.0000 1.13 1.00

Vulva 0.0104 0.0190 0.5831 1.0000 1.19 1.00

Oropharynx_Broad 0.0152 0.0166 0.3621 1.0000 1.20 1.00
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Table 2. Cont.

Cancer β-Estimate Std.
Error p-Value P. Adj. Holm E-Value

Estimate
Lower Bound

E-Value

Vagina 0.0151 0.0097 0.1221 1.0000 1.37 1.00

Colorectum −0.0009 0.0036 0.7948 1.0000 1.05 -

Brain −0.0113 0.0049 0.0216 0.2398 1.17 -

Non-Seminoma −0.0316 0.4242 0.9411 1.0000 1.17 -

Testis −0.0106 0.0043 0.0130 0.1825 1.19 -

Myeloma −0.0172 0.0035 9.02 × 10−7 1.98 × 10−5 1.29 -

Hepatocellular −0.0232 0.0170 0.1779 1.0000 1.41 -

Liver −0.0749 0.0061 5.30 × 10−33 1.54 × 10−31 1.54 -

Bladder −0.0678 0.0046 5.27 × 10−47 1.90 × 10−45 1.56 -

Hodgkin’s −0.0425 0.0032 8.56 × 10−38 2.65 × 10−36 1.56 -

Gallbladder and Biliary −0.0721 0.0053 8.46 × 10−39 2.79 × 10−37 1.60 -

Ovarian Dysgerminoma −0.0102 0.0143 0.4840 1.0000 1.64 -

Kaposi −0.0430 0.0179 0.0174 0.2260 1.65 -

Mesothelioma −0.1087 0.0353 0.0024 0.0382 1.69 -

Oropharynx −0.2054 0.0290 6.49 × 10−12 1.62 × 10−10 1.70 -

Thyroid −0.1136 0.0063 3.01 × 10−66 1.11 × 10−64 1.72 -

Medulloblastoma −0.0374 0.0272 0.1908 1.0000 2.43 -

Seminoma −0.0882 0.0250 0.0011 0.0203 3.01 -

Table key: β-Estimate—estimate of the regression coefficient; Std. Error—standard error of the regression
coefficient; p-value—significance level; P. Adj. Holm—p-value adjusted for multiple testing by the method of
Holm; E-value—expected value required of some unknown confounder covariate with both the exposure and
the outcome to explain the observed effect; lower bound of the E-value—the 95% lower bound of the confidence
interval of the E-value.

When the various metrics of cannabis exposure were considered by mixed effects
regression last month cannabis use was related to 10 cancers (Supplementary Table S5),
daily cannabis use was related to 11 cancers (Supplementary Table S6), the THC content of
cannabis herb was related to 21 cancers (Table 3), and the THC content of cannabis resin
was related to 20 cancers (Table 4). These numbers drop to 6, 11, 21 and 13 after adjustment
for multiple testing. From observations in the above paragraph it is ap-parent that linear
regression detects more statistically significant signals than mixed effects regression. When
the associations of cannabis herb THC concentration are studied by linear regression
31 positive cancers are significantly related, which drops to 29 cancers after multiple testing
correction (Supplementary Table S7).

When amphetamine is studied by mixed-effects regression, it is noted to be re-
lated to only three cancers and this result is not affected by multiple testing adjustment
(Supplementary Table S8). When the associations of cocaine are studied, it is apparently
related to 18 cancers and this result also does not change after multiple testing adjustment
(Supplementary Table S9).

We were also interested to observe if the interaction between cannabis herb THC
concentration and daily cannabis use was also associated with tumour incidence. This
interaction was similarly studied in nested mixed-effects models, and as shown in Supple-
mentary Table S10, this was associated with 13 cancers, which reduced to 9 after multiple
testing adjustment. Similarly, when the interaction between cannabis resin and daily
cannabis use was studied, it was significant in ten cancers, declining to nine after multiple
testing adjustment (Supplementary Table S11).
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Table 3. Regression modelling results, including slopes, significance levels and E-values for cannabis
herb THC concentration–cancer relationship slopes by mixed-effects regression.

Cancer β-Estimate Std.
Error p-Value P. Adj. Holm E-Value

Estimate
E-Value

Lower Bound

All Cancers nNMSC 2.6457 0.0778 4.69 × 10−180 1.41 × 10−178 4.88 × 1013 8.28 × 1012

All Cancers 2.8076 0.1071 6.70 × 10−102 1.94 × 10−100 3.15 × 1010 5.46 × 109

Prostate 5.2624 0.2489 1.55 × 10−86 4.35 × 10−85 4.59 × 107 9.56 × 106

Breast 2.4686 0.1369 1.36 × 10−65 3.67 × 10−64 3.51 × 106 7.37 × 105

Melanoma 5.9745 0.3598 8.89 × 10−57 2.31 × 10−55 5.59 × 105 1.28 × 105

Kidney 3.5398 0.2357 1.64 × 10−47 4.11 × 10−46 3.32 × 105 6.95 × 104

Colorectum 2.5415 0.1742 4.61 × 10−45 1.11 × 10−43 2.03 × 105 4.33 × 104

Pancreas 3.6625 0.2554 1.04 × 10−43 2.40 × 10−42 1.67 × 105 3.55 × 104

Testis 4.5855 0.3263 2.84 × 10−41 6.25 × 10−40 5.74 × 107 5.26 × 106

Thyroid 4.9267 0.3666 3.26 × 10−38 6.85 × 10−37 8.56 × 107 6.63 × 106

Non-Hodgkin’s Lymphoma 3.7844 0.2854 7.36 × 10−38 1.47 × 10−36 6.82 × 104 1.46 × 104

Lung 2.0357 0.1687 5.35 × 10−32 1.02 × 10−30 3.40 × 104 7.01 × 103

Anus 3.6672 0.3097 1.61 × 10−30 2.89 × 10−29 2.77 × 106 2.68 × 105

Oesophagus 3.5244 0.3847 1.71 × 10−19 2.90 × 10−18 2.58 × 103 557.87

Leukaemia—Myeloid 4.2458 0.6638 8.92 × 10−10 1.43 × 10−8 2.22 × 105 6.35 × 103

Oropharynx_Broad 2.5577 0.4523 2.82 × 10−8 4.23 × 10−7 5.05 × 102 74.07

Leukaemia—Lymphoid 1.6165 0.4299 2.16 × 10−4 0.0026 1784.06 51.56

Brain 1.1480 0.3174 3.09 × 10−4 0.0034 19.93 5.26

Myeloma 0.8656 0.2619 9.80 × 10−4 0.0098 127.86 10.41

Corpus Uteri 1.2936 0.4601 0.0050 0.0400 16.44 3.24

Liver 0.7809 0.3581 0.0294 0.2059 37.76 2.05

Hodgkin’s 0.4718 0.3032 0.1200 0.5999 12.08 1.00

Cervix 0.1742 0.3411 0.6097 1.0000 2.38 1.00

Bladder 0.0250 0.2849 0.9302 1.0000 1.35 1.00

Kaposi 0.0346 0.4840 0.9432 1.0000 2.09 1.00

Ovary −0.0127 0.3205 0.9684 1.0000 1.21 -

Oropharynx −2.7034 1.4854 0.0699 0.4192 54.33 -

Gallbladder and Biliary −1.1202 0.3420 0.0011 0.0098 487.89 -

Larynx −1.3647 0.3578 1.42 × 10−4 0.0018 27.57 -

Stomach −0.8809 0.2164 4.92 × 10−5 6.89 × 10−4 53.25 -

Table key: β-Estimate—estimate of the regression coefficient; Std. Error—standard error of the regression
coefficient; p-value—significance level; P. Adj. Holm—p-value adjusted for multiple testing by the method of
Holm; E-value—expected value required of some unknown confounder covariate with both the exposure and
the outcome to explain the observed effect; lower bound of the E-value—the 95% lower bound of the confidence
interval of the E-value.
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Table 4. Regression modelling results, including slopes, significance levels and E-values for THC
concentration of cannabis resin–cancer relationship slopes by mixed-effects regression.

Cancer β-Estimate Std.
Error p-Value P. Adj. Holm E-Value

Estimate
E-Value

Lower Bound

All Cancers nNMSC 1.1789 0.0622 2.82 × 10−70 8.46 × 10−69 2.22 × 105 6.70 × 104

Melanoma 2.8370 0.2030 1.36 × 10−41 3.93 × 10−40 795.41 343.77

All Cancers 1.0317 0.0758 7.34 × 10−37 2.05 × 10−35 2065.96 761.63

Pancreas 1.5037 0.1432 6.91 × 10−25 1.80 × 10−23 185.22 79.36

Breast 0.7634 0.0813 2.34 × 10−20 5.86 × 10−19 142.23 58.19

Anus 1.1325 0.1299 1.12 × 10−17 2.69 × 10−16 159.29 59.29

Non-Hodgkin’s
Lymphoma 1.4279 0.1679 4.80 × 10−17 1.10 × 10−15 101.29 40.73

Lung 0.7312 0.0921 4.22 × 10−15 9.29 × 10−14 71.04 29.12

Kidney 0.9545 0.1363 3.85 × 10−12 8.08 × 10−11 41.16 17.33

Oesophagus 1.2442 0.2143 7.86 × 10−9 1.42 × 10−7 23.50 9.87

Testis 0.8143 0.1502 7.38 × 10−8 1.26 × 10−6 33.71 11.76

Oropharynx 2.3818 0.5030 3.70 × 10−6 5.92 × 10−5 69.39 15.59

Oropharynx_Broad 1.1861 0.2844 3.67 × 10−5 4.78 × 10−4 24.73 7.15

Bladder 0.5357 0.1597 8.18-04 0.0098 7.87 3.04

Hodgkin’s 0.3397 0.1236 0.0061 0.0608 6.91 2.28

Brain 0.5346 0.1948 0.0061 0.0608 5.20 2.05

Thyroid 0.3513 0.1603 0.0287 0.2006 5.58 1.51

Prostate 0.3118 0.1532 0.0420 0.2521 4.40 1.23

Kaposi 0.1992 0.5144 0.6998 1.0000 9.45 1.00

Myeloma 0.0387 0.1039 0.7096 1.0000 1.70 1.00

Colorectum 0.0315 0.0960 0.7429 1.0000 1.58 1.00

Corpus Uteri −0.3324 0.2662 0.2119 0.8477 2.82 -

Leukaemia—Myeloid −0.4144 0.2523 0.1020 0.5100 5.73 -

Liver −0.3425 0.1377 0.0130 0.1044 7.02 -

Leukaemia—Lymphoid −0.4516 0.1521 0.0033 0.0366 15.46 -

Cervix −0.8035 0.1902 2.54 × 10−5 3.56 × 10−4 12.79 -

Ovary −0.8408 0.1827 4.57 × 10−6 6.86 × 10−5 14.58 -

Gallbladder and Biliary −0.8315 0.1407 4.78 × 10−9 9.08 × 10−8 116.77 -

Larynx −1.2162 0.2026 2.47 × 10−9 4.94 × 10−8 21.12 -

Stomach −1.3226 0.1114 4.89 × 10−31 1.32 × 10−29 352.51 -

Table key: β-Estimate—estimate of the regression coefficient; Std. Error—standard error of the regression
coefficient; p-value—significance level; P. Adj. Holm—p-value adjusted for multiple testing by the method of
Holm; E-value—expected value required of some unknown confounder covariate with both the exposure and
the outcome to explain the observed effect; lower bound of the E-value—the 95% lower bound of the confidence
interval of the E-value.

Bivariate Conclusions

Naturally, it was of interest to see how these different tumours performed across the
various markers of cannabis use. Table 5 sets out the cancers significantly associated with
the various indices of cannabis exposure for the four main bivariate mixed-effects models.
As shown in the table, eight cancers appeared in all four mixed-effects models, and ten
cancers appeared in three of them, making a total of eighteen cancers potentially implicated
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with cannabis exposure when similar analytical techniques to those for tobacco and alcohol
were applied. Supplementary Table S12 performs a similar function by taking the level
of significance as the multiple adjustment level of Holm. In this table, only oesophageal
cancer is significant across all models and five other cancers appear in three of the four
main models.

Table 5. Collated results of bivariate regressions for cannabis metrics by model type.

Herb. THC Resin. THC Daily Interpolated Last Month’s Cannabis

All Cancers All Cancers All Cancers

All Cancers nNMSC All Cancers nNMSC All Cancers nNMSC All Cancers nNMSC

Anus Anus Anus Anus

Bladder Bladder Bladder

Brain Brain

Breast Breast Breast Breast

Cervix

Colorectum Colorectum Colorectum

Corpus Uteri

Gallbladder and Biliary

Hodgkin’s Hodgkin’s Hodgkin’s

Kaposi Kaposi Kaposi

Kidney Kidney Kidney Kidney

Larynx Larynx

Leukaemia

Leukaemia—Lymphoid Leukaemia—Lymphoid

Leukaemia—Myeloid Leukaemia—Myeloid Leukaemia—Myeloid

Liver Liver Liver

Lung Lung Lung Lung

Melanoma Melanoma Melanoma

Mesothelioma

Myeloma Myeloma Myeloma

Non-Hodgkin’s Lymphoma Non-Hodgkin’s Lymphoma Non-Hodgkin’s Lymphoma Non-Hodgkin’s Lymphoma

Oesophagus Oesophagus Oesophagus Oesophagus

Oropharynx Oropharynx

Oropharynx_Broad Oropharynx_Broad Oropharynx_Broad Oropharynx_Broad

Pancreas Pancreas Pancreas

Prostate Prostate

Stomach

Testis Testis

Thyroid Thyroid Thyroid Thyroid

Vulva and Vagina Vulva and Vagina Vulva and Vagina

Key—Each column in this table relates to a different independent regression covariate.
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Correlation Analysis

It is of interest to consider the correlation between the different covariates and the
most common cancers. As the data had some missing values, the correlation matrix was
calculated in the R package WGCNA. The correlograms shown in Supplementary Figure S7
were drawn in the R package corrplot, which also indicates the various Pearson correlation
coefficients. The significance levels of these correlation coefficients are shown quantita-
tively in Supplementary Figure S8 and semi-quantitatively in Supplementary Figure S9.
Supplementary Table S13 sets out the correlation coefficients themselves; their p values are
shown in Supplementary Table S14 and the numbers of observations upon which they are
based are shown in Supplementary Table S15. Interestingly, the strongest correlation of
interest shown is between daily cannabis use and cocaine of R = 0.7795, p = 4.40 × 10−50

and is based on 249 observations. The correlation between last month’s cannabis use and
lung cancer is 0.44, which is associated with a p value of 7.61 × 10−18 and is based on
345 observations.

Mapping Analysis

It is of interest to consider the distribution of cancer across space and time. Sup-
plementary Figure S10 sets this out for all cancers. High levels are noted across time in
both the United Kingdom and Estonia. Figure 7 presents a similar series of maps for
ACnNMSC and observes a similar pattern. Rates in the low countries such as Norway and
Denmark are intermediate between those of the nations where cancer is more common and
lower incidence countries such as Poland and Lithuania. Figure 8 shows a similar plot of
breast cancer across the continent. Rates appear to be uniformly elevated across both time
and space.

Supplementary Figure S11 presents a map graph of the THC concentration of cannabis
herb. High levels are noted in Spain, Netherlands and Estonia, with intermediate levels in
France and Germany.

It is possible to consider the cooccurrence of two different covariates across time and
space. Supplementary Figure S12 sets this out for the rates of all cancers and cannabis herb
THC concentration. In this map, the green areas denote zones in which both covariates are
low whilst the pink and purple areas indicate zones where both covariates are elevated.
On this map, Estonia stands out prominently as being a country with high levels of both
total cancer and THC content of cannabis herb. Data for many other nations are absent.

When ACnNMSC is studied in a similar manner, the appearances shown in Figure 9
are seen. Estonia is still high, but here, France, Czechia and Hungary are noted to be shaded
in purple.

When breast cancer is analysed in a similar manner, most of the European continent is
noted to be highlighted in pink where data are available (Figure 10).

When liver cancer is studied, Spain, France and Italy are shaded in purple
(Supplementary Figure S13). When the rates of pancreatic cancer are examined, many
nations are noted to be shaded in purple (Figure 11). Considering prostate cancer, France,
Czechia, Estonia and Finland are seen to be highlighted in purple or pink
(Supplementary Figure S14). When colorectal cancer is considered, Spain, France, Czechia,
Estonia and Hungary are all highlighted (Supplementary Figure S15). France, Hungary,
Germany, Estonia and the Netherlands are highlighted when lung cancer is considered
(Supplementary Figure S16). Most of Europe is shaded in purple in Supplementary Figure S17
when non-Hodgkin’s lymphoma is similarly considered. Lymphoid leukaemia (chronic lym-
phatic leukaemia) is highlighted in Estonia, Germany, France, Czech Republic, and Hungary
(Supplementary Figure S18). Vulval carcinoma is corelated with cannabis herb THC concen-
tration in Germany, the Netherlands and Czechia as shown in Supplementary Figure S19.
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Figure 7. Rates of all cancers but not non-melanoma skin cancer across Europe 2000–2020.
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Figure 8. Rates of breast cancer across Europe 2000–2020.
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Figure 9. Bivariate map of all cancers but not non-melanoma skin cancer by cannabis herb THC concentration. Please see text for details.
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Figure 10. Bivariate map of breast cancer by cannabis herb THC concentration.
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Figure 11. Bivariate map of pancreatic cancer by cannabis herb THC concentration. Please see text for details.
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3.2.2. Categorical Analysis
Tabular Analysis

As shown in Supplementary Table S16, the countries involved in this study may be
divided into nations with higher compared to lower levels of tobacco use. The top ten
nations for average tobacco use across this period are Bulgaria, Austria, Latvia, Estonia,
Lithuania, France, Spain, Czech Republic, Sweden and Hungary. These nations therefore
may be grouped as relatively high-tobacco-using countries compared with cancer rates
in the other countries. The age-standardised rates in each country were multiplied by
the population of that country for each of the years concerned to generate estimates of
the numbers of the cases of each cancer in the higher and lower tobacco-using groups,
respectively, as shown in Supplementary Table S17. This Table also shows applicable
p-values and E-values. The p-values shown are often very low (in R a p-value < 10−307 is
considered to be zero) and the E-values range up to 6.67 for oropharyngeal cancer. Both
the E-value and its lower bound for the lung cancer–tobacco relationship by this method
are 1.24. From these data, the relative risk incidences, attributable fractions in the exposed
(AFE) and population-attributable risks (PAR) (also known as the attributable fraction in
the population) may be calculated for higher levels of tobacco exposure, as shown in Table 6.
The Table is headed by oropharyngeal cancer with an RR of 3.63 (95% C.I. 3.60–3.65), AFE
of 72.43% (72.24%–72.61%) and PAR of 50.43% (50.19%–50.66%).

Table 6. Relative risks, attributable fractions in the exposed and population-attributable risks for
high- vs. low-tobacco-exposure nations, respectively.

Cancer p-Value RR (C.I.) AFE (C.I.) PAF (C.I.)

Oropharynx 0.0000 3.627 (3.6028, 3.6514) 0.7243 (0.7224, 0.7261) 0.5043 (0.5019, 0.5066)

Cervix 0.0000 1.9962 (1.9932, 1.9992) 0.499 (0.4983, 0.4998) 0.2763 (0.2757, 0.2769)

Stomach 0.0000 1.8241 (1.8216, 1.8266) 0.4518 (0.451, 0.4525) 0.2468 (0.2463, 0.2474)

Kidney 0.0000 1.7574 (1.7549, 1.7599) 0.431 (0.4302, 0.4318) 0.2315 (0.2309, 0.2321)

Prostate 0.0000 1.6336 (1.6328, 1.6344) 0.3879 (0.3876, 0.3882) 0.1964 (0.1962, 0.1966)

Pancreas 0.0000 1.601 (1.5985, 1.6035) 0.3754 (0.3744, 0.3764) 0.1929 (0.1923, 0.1935)

Corpus Uteri 0.0000 1.5789 (1.577, 1.5808) 0.3666 (0.3659, 0.3674) 0.1758 (0.1753, 0.1763)

Leukaemia 0.0000 1.5676 (1.565, 1.5701) 0.3621 (0.361, 0.3631) 0.1615 (0.1609, 0.1621)

All Cancers 0.0000 1.5195 (1.5186, 1.5203) 0.3419 (0.3415, 0.3423) 0.2234 (0.2231, 0.2237)

Ovary 0.0000 1.4957 (1.4936, 1.4978) 0.3314 (0.3305, 0.3323) 0.1596 (0.1591, 0.1602)

Larynx 0.0000 1.453 (1.4495, 1.4565) 0.3118 (0.3101, 0.3134) 0.1549 (0.1539, 0.1559)

Lung 0.0000 1.442 (1.4409, 1.4431) 0.3065 (0.306, 0.3071) 0.1479 (0.1476, 0.1482)

Oesophagus 0.0000 1.3267 (1.3236, 1.3298) 0.2462 (0.2445, 0.248) 0.115 (0.114, 0.1159)

All Cancers
nNMSC 0.0000 1.3089 (1.3086, 1.3093) 0.236 (0.2358, 0.2362) 0.0995 (0.0994, 0.0996)

Oropharynx_Broad 0.0000 1.2962 (1.2905, 1.302) 0.2285 (0.2251, 0.232) 0.1432 (0.1408, 0.1456)

Brain 0.0000 1.0472 (1.0452, 1.0492) 0.0451 (0.0432, 0.0469) 0.0178 (0.017, 0.0185)

Colorectum 0.0000 1.0408 (1.0402, 1.0415) 0.0392 (0.0386, 0.0398) 0.0155 (0.0152, 0.0157)

Breast 0.0000 1.0281 (1.0275, 1.0286) 0.0273 (0.0268, 0.0278) 0.011 (0.0107, 0.0112)

Liver 2.25 × 10−34 1.0122 (1.0102, 1.0141) 0.012 (0.0101, 0.0139) 0.0049 (0.0041, 0.0056)

Bladder 5.05 × 10−45 1.0089 (1.0076, 1.0101) 0.0088 (0.0076, 0.01) 0.0035 (0.003, 0.004)

Hepatocellular 1.75 × 10−2 1.0937 (1.0063, 1.1888) 0.0857 (0.0062, 0.1588) 0.0081 (0.0003, 0.0159)

Penis 7.09 × 10−13 0.9807 (0.9754, 0.986) −0.0197 (−0.0252, −0.0142) −0.0068 (−0.0087, −0.0049)

Melanoma 0.0000 0.9646 (0.9632, 0.966) −0.0367 (−0.0382, −0.0352) −0.0139 (−0.0144, −0.0133)
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Table 6. Cont.

Cancer p-Value RR (C.I.) AFE (C.I.) PAF (C.I.)

Gallbladder and
Biliary 1.33 × 10−284 0.939 (0.9358, 0.9422) −0.065 (−0.0686, −0.0613) −0.0216 (−0.0227, −0.0204)

Leukaemia—
Lymphoid 4.55 × 10−161 0.9207 (0.9152, 0.9262) −0.0861 (−0.0927, −0.0796) −0.045 (−0.0482, −0.0417)

Hodgkin’s 0.0000 0.9043 (0.9017, 0.9069) −0.1059 (−0.109, −0.1027) −0.0383 (−0.0393, −0.0372)

Anus 0.0000 0.8729 (0.8682, 0.8776) −0.1456 (−0.1518, −0.1395) −0.0522 (−0.0542, −0.0501)

Thyroid 0.0000 0.8523 (0.8508, 0.8538) −0.1733 (−0.1754, −0.1712) −0.0617 (−0.0624, −0.061)

Myeloma 0.0000 0.8404 (0.8381, 0.8427) −0.1899 (−0.1931, −0.1867) −0.0669 (−0.0679, −0.0659)

Testis 0.0000 0.8054 (0.8038, 0.807) −0.2416 (−0.2441, −0.2392) −0.0796 (−0.0803, −0.0789)

Non-Hodgkin’s
Lymphoma 0.0000 0.8028 (0.8015, 0.8041) −0.2456 (−0.2477, −0.2436) −0.0724 (−0.0729, −0.0719)

Vulva and Vagina 0.0000 0.7813 (0.7773, 0.7853) −0.28 (−0.2866, −0.2734) −0.084 (−0.0857, −0.0823)

Vagina 1.84 × 10−85 0.7031 (0.6786, 0.7285) −0.4223 (−0.4737, −0.3727) −0.065 (−0.0708, −0.0592)

Leukaemia—
Myeloid 0.0000 0.6386 (0.6329, 0.6443) −0.566 (−0.5801, −0.5521) −0.2466 (−0.2514, −0.2417)

Vulva 0.0000 0.591 (0.5808, 0.6015) −0.6919 (−0.7217, −0.6626) −0.0926 (−0.0951, −0.09)

Table key: R.R.—Relative risk; AFE—attributable fraction in the exposed; PAR—population-attributable risk;
C.I.—confidence interval; p-value—significance level.

A similar exercise may be performed for alcohol. In this case, the top ten nations for
alcohol consumption across this period, defined by their mean annual alcohol consumption
based on study data, summarised in Supplementary Table S18 and used to derive the cases
in the highly exposed and less-exposed groups, are shown in Supplementary Table S19.
Once again, broadly defined upper airways carcinoma (also called head and neck cancer)
leads in this table with a p-value of zero and an E-value estimate of 4.20. Once again,
elevated relative risk ratios, AFEs and PARs can be calculated (Supplementary Table S20).
The high results, which are again seen (RR = 2.38 (2.35–2.41), AFE = 58.05% (57.48–58.60%)
and PAR (56.61% (56.04–57.16%)), are consistent with the known causal role of both tobacco
and alcohol in upper aerodigestive tract cancerogenesis.

Supplementary Table S21 sets out the rate of cannabis use across the nations in this
study by the four main metrics of cannabis use. Using such information in addition to
that of major epidemiological reports recently produced on the subject, it was possible to
denote Belgium, Netherlands, France, Germany, Ireland, Italy, Estonia, Norway, Portugal
and Spain as high-risk nations and the others as lower risk countries.

With the nations grouped in this way, it was again possible to calculate numbers
in the more highly exposed countries (Supplementary Table S22) and their applicable
RR, AFE and PAR ratios (Table 7). These tables are led by Kaposi sarcoma and liver and
thyroid cancers with p-values, E-value estimates, RRs, AFEs and PARs of: Kaposi sar-
coma p = 1.86 × 10−170, E.est. = 3.58, RR = 2.08 (1.98–2.19), AFE = 51.95% (49.34–25.42%)
and PAR = 25.73% (23.76–27.65%); liver cancer p = zero, E.est. = 2.92, RR = 1.76 (1.76–1.77),
AFE = 43.27% (43.04–43.50%) and PAR = 40.77% (40.55–40.99%); thyroid cancer p = zero,
E.est. = 2.77, RR = 1.69 (1.68–1.70), AFE = 40.90% (40.69–41.11%) and PAR = 38.50%
(38.30–38.71%).
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Table 7. Relative risks, attributable fractions in the exposed and population-attributable risks for
high- vs. low-cannabis-exposure nations, respectively.

Cancer p-Value RR (C.I.) AFE (C.I.) PAF (C.I.)

Kaposi 1.86 × 10−170 2.081 (1.9739, 2.1939) 0.5195 (0.4934, 0.5442) 0.2573 (0.2376, 0.2765)

Liver 0.0000 1.7627 (1.7556, 1.7698) 0.4327 (0.4304, 0.435) 0.4077 (0.4055, 0.4099)

Thyroid 0.0000 1.6921 (1.6861, 1.6981) 0.409 (0.4069, 0.4111) 0.385 (0.383, 0.3871)

Stomach 0.0000 1.6847 (1.68, 1.6893) 0.4064 (0.4048, 0.408) 0.3827 (0.3811, 0.3843)

Oropharynx_Broad 0.0000 1.6204 (1.6104, 1.6304) 0.3829 (0.3791, 0.3866) 0.3306 (0.3271, 0.3342)

Larynx 0.0000 1.5906 (1.5822, 1.5991) 0.3713 (0.368, 0.3746) 0.3524 (0.3492, 0.3557)

Breast 0.0000 1.4899 (1.4882, 1.4915) 0.3288 (0.3281, 0.3296) 0.3095 (0.3088, 0.3102)

All Cancers 0.0000 1.4057 (1.4047, 1.4067) 0.2886 (0.2881, 0.2891) 0.2411 (0.2406, 0.2415)

Hodgkin’s 0.0000 1.2985 (1.2918, 1.3054) 0.2299 (0.2259, 0.2339) 0.213 (0.2092, 0.2168)

Bladder 0.0000 1.2896 (1.2866, 1.2925) 0.2246 (0.2228, 0.2263) 0.2077 (0.206, 0.2094)

Kidney 0.0000 1.287 (1.2836, 1.2903) 0.223 (0.221, 0.225) 0.2062 (0.2043, 0.2081)

Pancreas 0.0000 1.2859 (1.2822, 1.2895) 0.2223 (0.2201, 0.2245) 0.2056 (0.2035, 0.2077)

Prostate 0.0000 1.274 (1.2728, 1.2751) 0.2151 (0.2144, 0.2158) 0.1984 (0.1978, 0.1991)

Lung 0.0000 1.2704 (1.2685, 1.2724) 0.2129 (0.2116, 0.2141) 0.1992 (0.198, 0.2004)

Leukaemia 0.0000 1.2471 (1.2436, 1.2507) 0.1981 (0.1959, 0.2004) 0.1819 (0.1798, 0.1841)

Colorectum 0.0000 1.2186 (1.2173, 1.22) 0.1794 (0.1785, 0.1803) 0.1646 (0.1638, 0.1655)

All Cancers nNMSC 0.0000 1.2121 (1.2115, 1.2127) 0.175 (0.1746, 0.1754) 0.1607 (0.1603, 0.1611)

Gallbladder and
Biliary 1.91 × 10−252 1.109 (1.1023, 1.1156) 0.0982 (0.0928, 0.1036) 0.0905 (0.0855, 0.0955)

Myeloma 0.0000 1.1072 (1.1022, 1.1123) 0.0968 (0.0927, 0.101) 0.0884 (0.0846, 0.0922)

Leukaemia—
Myeloid 6.17 × 10−64 1.0916 (1.0806, 1.1028) 0.084 (0.0746, 0.0933) 0.0655 (0.0581, 0.073)

Leukaemia—
Lymphoid 9.73 × 10−101 1.0805 (1.0728, 1.0883) 0.0745 (0.0679, 0.0811) 0.0582 (0.0529, 0.0634)

Corpus Uteri 0.0000 1.0657 (1.0638, 1.0676) 0.0616 (0.06, 0.0633) 0.0543 (0.0528, 0.0557)

Cervix 0.0000 1.056 (1.0534, 1.0586) 0.053 (0.0507, 0.0554) 0.0481 (0.046, 0.0503)

Testis 1.76 × 10−119 1.0386 (1.0353, 1.042) 0.0372 (0.0341, 0.0403) 0.0337 (0.0309, 0.0365)

Ovary 2.24 × 10−92 1.0245 (1.0222, 1.0269) 0.024 (0.0217, 0.0262) 0.0217 (0.0196, 0.0238)

Anus 1.47 × 10−8 1.0254 (1.0164, 1.0346) 0.0248 (0.0161, 0.0334) 0.0225 (0.0146, 0.0303)

Non-Hodgkin’s
Lymphoma 1.19 × 10−70 0.9781 (0.9757, 0.9805) −0.0224 (−0.0249, −0.0199) −0.02 (−0.0223, −0.0178)

Melanoma 6.32 × 10−297 0.9571 (0.9549, 0.9594) −0.0448 (−0.0472, −0.0424) −0.0403 (−0.0425, −0.0381)

Hepatocellular 0.0175 0.9143 (0.8412, 0.9938) −0.0937 (−0.1888, −0.0063) −0.0848 (−0.1699, −0.006)

Oesophagus 0.0000 0.8962 (0.8929, 0.8996) −0.1158 (−0.12, −0.1116) −0.1037 (−0.1074, −0.0999)

Brain 0.0000 0.7878 (0.7855, 0.79) −0.2694 (−0.273, −0.2658) −0.2371 (−0.2402, −0.234)

Penis 0.0000 0.7663 (0.7604, 0.7722) −0.305 (−0.3152, −0.2949) −0.2659 (−0.2745, −0.2574)

Vulva 0.0000 0.7187 (0.7103, 0.7271) −0.3915 (−0.4078, −0.3753) −0.2291 (−0.2375, −0.2207)

Vagina 2.72 × 10−162 0.7082 (0.6907, 0.7262) −0.412 (−0.4478, −0.377) −0.2403 (−0.2585, −0.2223)

Vulva and Vagina 0.0000 0.6967 (0.6918, 0.7017) −0.4353 (−0.4456, −0.4251) −0.3788 (−0.3874, −0.3703)

Oropharynx 0.0000 0.6292 (0.6245, 0.6339) −0.5894 (−0.6012, −0.5776) −0.3675 (−0.3739, −0.3612)

Table key: R.R.—Relative risk; AFE—attributable fraction in the exposed; PAR—population-attributable risk;
C.I.—confidence interval; p-value—significance level.
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Graphical Analysis

Moreover, the cancer rates across all tumour types in high-cannabis-using countries
may be contrasted with those in nations with lower rates as shown in Figure 12, where the
log age-standardised cancer rates across all tumours appear to be markedly higher than
those in lower-cannabis-use countries. When these data were considered by linear regres-
sion in an additive model with time, the higher status group demonstrated significantly
elevated cancer rates compared to those with lower use rates (β-estimate = 0.4161, t = 22.9,
p = 3.54 × 10−115; model Adj. R. Squ. = 0.0125; F = 319 on df = 2, 50,175, p < 2.2 × 10−16).
When an interactive linear model was again considered, the result was also highly signif-
icant both for the high-status group (β-estimate = −37.4445, t = −5.60, p = 2.18 × 10−8;
model Adj. R. Squ. = 0.0131; F = 224 on df = 3, 501,754 p < 2.2 × 10−16) and for the
time: status interaction (β-estimate = 0.01884, t = 5.66, p = 1.52 × 10−8). When the data
were considered by mixed-effects regression in an additive model with time, with region
as a random effect, the effect of exposure group designation was again highly signifi-
cant (β-estimate = 0.1541, t = 5.55, p = 2.74 × 10−8; model AIC = 176,315, BIC = 176,360,
log.Lik ratio = 88,152.7).
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Figure 12. Logarithm ASRw rates in high-cannabis-using countries compared to low-cannabis-using
countries. Please see text for details.
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These data may also be considered in a tumour-specific manner as shown in
Supplementary Figure S20. Interestingly, the regression lines for common tumours such
as all cancers, ACnNMSC, breast cancer, colorectal cancer, laryngeal cancer and thyroid
cancer are significantly above those for the lower-cannabis-using countries. The pattern
for other tumours is the inverse of this. Aggregated across time, the boxplots generated
in Supplementary Figure S21 may be shown. These graphs are read by noting where the
notches on the boxes do not overlap between groups. The extent of the failure of overlap
is a measure of the statistical significance of between group differences. The cancers are
panelled alphabetically, which makes finding a tumour of interest straightforward. It is im-
mediately apparent that the notches for all cancers, ACnNMSC, breast, thyroid, lymphoid
leukaemia, liver cancer and many others are widely separated. Supplementary Figure S22
illustrates the same data, but this time ordered in descending order of the ratio of the cancer
rates in the high- to the low-cannabis-using countries.

3.3. Multivariable Regression Analysis
3.3.1. Additive
Mixed-Effects Model

A multivariable mixed-effects model was next considered, which examines the relative
contribution of the various covariates to the tumour-specific cancer rates. The model was
an additive mixed-effects model with terms for tobacco, alcohol, last month’s cannabis
use, median household income and the mean THC concentration of cannabis herb and
resin. The random effect was assigned to country and region. The full output from the
model is shown in Supplementary Table S23. The Table is headed by ACnNMSC and
liver cancer with p-values of 1.52 × 10−11 and 3.50 × 10−17 and E-values of 6.30 × 10126

and 7.94 × 1073, respectively. Terms from this model, which are positive and significant,
are extracted as Supplementary Table S24. Correction for multiple testing has also been
included in the tabulation of results. Fifty-four terms were extracted in this way. These
terms may be summarised as shown in Supplementary Table S25, which shows the number
of cancers implicated, and the sum, mean and median of the (negative) p-value exponents
and, similarly, the sum, mean and median of the minimum E-value exponents.

The main findings from this table are illustrated graphically in Supplementary Figure S23,
which shows the number of cancers, the sum of the (negative) exponents of the p-values and
the total and mean minimum E-values in panels A–D, respectively. It is clear from this figure
that the concentration of cannabis herb and last month’s cannabis occupy the highest position
on all four graphs. It is noted that the ordinate scale in the lower two panels is a logarithmic
scale, which amplifies the differences shown.

Panel Model—Additive

This same model was studied by panel regression techniques as panel techniques can
be used to study temporal lagging, which are not available with mixed-effects models. For
this reason, a similar model was studied by panel techniques. The output from this model
is shown in Supplementary Table S27. From this exercise, 70 positive and significant terms
were extracted and are shown in Table 8. These are summarised in Table 9 and illustrated
graphically in Figure 13. Once again, the indices of cannabis use appear on the right-hand
side of these graphs for numbers of tumours implicated and the cumulative indices of p-
and E- values.
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Table 8. Positive and significant terms from the additive panel model.

Cancer Term β-
Estimate

Std.
Error p-Value Adj. P. FDR Adj. P.

Holm
E-Value
Estimate

E-Value 95%
Lower Bound

All Cancers
nNMSC LM.Cannabis 28.793 2.305 7.96 × 10−26 5.58 × 10−25 4.86 × 10−24 3.50 × 1060 1.29 × 1051

Myeloma LM.Cannabis 18.834 2.110 1.64 × 10−16 7.15 × 10−16 8.99 × 10−15 1.79 × 1043 6.91 × 1033

Lung LM.Cannabis 27.039 2.293 1.32 × 10−25 8.38 × 10−25 7.90 × 10−24 7.26 × 1039 2.00 × 1033

Kidney LM.Cannabis 34.251 2.951 4.67 × 10−25 2.73 × 10−24 2.76 × 10−23 1.70 × 1039 4.68 × 1032

Pancreas LM.Cannabis 29.502 2.956 7.13 × 10−20 3.57 × 10−19 4.07 × 10−18 5.97 × 1033 1.65 × 1027

Leukaemia—
Lymphoid LM.Cannabis 9.998 2.584 3.66 × 10−4 5.56 × 10−4 9.14 × 10−3 1.09 × 1045 2.64 × 1022

All Cancers
nNMSC THC.Herb 10.642 0.521 1.15 × 10−47 1.34 × 10−46 7.48 × 10−46 3.69 × 1022 2.73 × 1020

Non-Hodgkin’s
Lymphoma LM.Cannabis 26.819 3.429 1.75 × 10−13 6.45 × 10−13 9.10 × 10−12 3.42 × 1026 9.39 × 1019

Colorectum LM.Cannabis 18.142 2.303 1.13 × 10−13 4.38 × 10−13 5.97 × 10−12 5.83 × 1025 2.76 × 1019

Prostate LM.Cannabis 22.525 3.112 6.20 × 10−12 1.97 × 10−11 3.04 × 10−10 3.77 × 1024 1.04 × 1018

All Cancers LM.Cannabis 17.153 4.312 1.51 × 10−4 2.40 × 10−4 4.07 × 10−3 4.43 × 1034 5.71 × 1017

Pancreas THC.Herb 15.302 0.584 1.27 × 10−72 8.88 × 10−71 8.88 × 10−71 4.61 × 1017 2.33 × 1016

Hodgkin’s LM.Cannabis 13.231 2.507 2.91 × 10−7 6.56 × 10−7 1.16 × 10−5 3.05 × 1025 1.41 × 1016

Stomach LM.Cannabis 20.239 3.032 1.67 × 10−10 4.88 × 10−10 7.87 × 10−9 4.86 × 1022 1.34 × 1016

Stomach THC.Herb 15.302 0.599 1.20 × 10−70 4.21 × 10−69 8.29 × 10−69 1.68 × 1017 8.51 × 1015

Prostate THC.Herb 15.119 0.616 2.58 × 10−67 6.01 × 10−66 1.75 × 10−65 3.94 × 1016 1.98 × 1015

Breast LM.Cannabis 13.958 2.225 1.66 × 10−9 4.29 × 10−9 7.28 × 10−8 2.18 × 1021 5.99 × 1014

Kidney THC.Herb 13.038 0.583 8.04 × 10−61 1.41 × 10−59 5.38 × 10−59 1.32 × 1015 6.66 × 1013

Lung THC.Herb 9.751 0.453 8.43 × 10−58 1.18 × 10−56 5.56 × 10−56 3.69 × 1014 1.86 × 1013

All Cancers THC.Herb 9.102 1.851 4.52 × 10−6 8.78 × 10−6 1.58 × 10−4 3.37 × 1018 1.89 × 1011

Breast THC.Herb 7.398 0.440 2.23 × 10−42 2.23 × 10−41 1.43 × 10−40 2.83 × 1011 1.43 × 1010

Melanoma LM.Cannabis 19.128 4.101 5.13 × 10−6 9.71 × 10−6 1.74 × 10−4 8.80 × 1015 2.42 × 109

Non-Hodgkin’s
Lymphoma THC.Herb 10.009 0.679 2.68 × 10−35 2.35 × 10−34 1.69 × 10−33 1.24 × 1010 6.20 × 108

Oropharynx THC.Herb 17.962 5.844 3.42 × 10−3 4.35 × 10−3 5.47 × 10−2 4.75 × 1019 2.22 × 107

Corpus Uteri THC.Herb 10.573 0.871 7.86 × 10−27 6.12 × 10−26 4.88 × 10−25 2.06 × 108 1.06 × 107

Cervix THC.Herb 7.048 0.692 1.79 × 10−20 9.64 × 10−20 1.04 × 10−18 1.15 × 107 5.77 × 105

Oropharynx THC.Resin 7.056 1.081 3.30 × 10−8 7.96 × 10−8 1.38 × 10−6 8.17 × 107 4.28 × 105

Colorectum THC.Herb 4.636 0.467 1.03 × 10−19 4.79 × 10−19 5.75 × 10−18 6.43 × 106 3.36 × 105

Myeloma THC.Herb 4.293 1.067 7.80 × 10−5 1.33 × 10−4 2.34 × 10−3 1.24 × 1010 2.16 × 105

Bladder LM.Cannabis 12.723 3.734 7.68 × 10−4 1.12 × 10−3 1.77 × 10−2 5.35 × 1011 1.47 × 105

Larynx LM.Cannabis 21.062 6.232 8.46 × 10−4 1.21 × 10−3 1.86 × 10−2 4.31 × 1011 1.19 × 105

Oesophagus LM.Cannabis 21.862 6.703 1.27 × 10−3 1.74 × 10−3 2.53 × 10−2 1.73 × 1011 4.78 × 104

Ovary THC.Herb 6.596 0.867 6.26 × 10−13 2.09 × 10−12 3.13 × 10−11 2.24 × 105 1.13 × 104

Larynx THC.Herb 8.671 1.231 1.95 × 10−11 5.93 × 10−11 9.35 × 10−10 9.27 × 104 4.69 × 103

Liver THC.Herb 6.224 1.927 1.44 × 10−3 1.94 × 10−3 2.74 × 10−2 1.64 × 108 2.64 × 103

Melanoma THC.Herb 5.221 0.810 6.37 × 10−10 1.72 × 10−9 2.87 × 10−8 3.72 × 104 1.88 × 103

Oropharynx Income 2.004 0.345 4.46 × 10−7 9.75 × 10−7 1.74 × 10−5 2.90 × 102 53.68

Bladder THC.Herb 2.976 0.738 7.35 × 10−5 1.29 × 10−4 2.28 × 10−3 9.41 × 102 47.12

Liver LM.Cannabis 8.543 3.824 2.66 × 10−2 2.86 × 10−2 0.1792 1.45 × 1011 44.49

Oesophagus THC.Herb 5.217 1.324 1.07 × 10−4 1.74 × 10−4 0.0031 814.30 40.70
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Table 8. Cont.

Cancer Term β-
Estimate

Std.
Error p-Value Adj. P. FDR Adj. P.

Holm
E-Value
Estimate

E-Value 95%
Lower Bound

Testis Income 0.568 0.090 1.72 × 10−9 4.30 × 10−9 7.40 × 10−8 18.99 9.07

Brain THC.Herb 3.806 1.278 3.20 × 10−3 4.14 × 10−3 0.0543 188.66 9.00

Gallbladder and
Biliary Income 0.600 0.123 2.23 × 10−6 4.59 × 10−6 8.24 × 10−5 23.49 8.33

Thyroid THC.Resin 1.567 0.533 3.62 × 10−3 4.52 × 10−3 0.0547 61.00 5.75

Anus Income 0.347 0.069 1.09 × 10−6 2.30 × 10−6 4.12 × 10−5 11.84 5.52

Myeloma THC.Resin 0.632 0.222 4.79 × 10−3 5.68 × 10−3 0.0575 54.80 5.11

Gallbladder and
Biliary Alcohol 0.296 0.037 1.09 × 10−13 4.38 × 10−13 5.87 × 10−12 6.27 4.48

Ovary LM.Cannabis 9.010 4.381 4.08 × 10−2 4.14 × 10−2 0.1792 1.58 × 107 3.76

Myeloma Income 0.272 0.069 1.06 × 10−4 1.74 × 10−4 0.0031 7.82 3.53

Oropharynx Tobacco 0.298 0.037 1.99 × 10−10 5.58 × 10−10 9.17 × 10−9 3.61 2.89

All Cancers
nNMSC THC.Resin 0.643 0.290 2.78 × 10−2 2.95 × 10−2 0.1792 43.75 2.24

Leukaemia—
Myeloid Alcohol 0.164 0.062 1.15 × 10−2 1.32 × 10−2 0.1155 5.24 1.96

Testis Alcohol 0.126 0.035 3.89 × 10−4 5.80 × 10−4 0.0093 2.70 1.83

Hodgkin’s THC.Resin 0.564 0.263 3.29 × 10−2 3.38 × 10−2 0.1792 23.15 1.80

Prostate Tobacco 0.089 0.011 2.47 × 10−13 8.66 × 10−13 1.26 × 10−11 1.80 1.64

Corpus Uteri Tobacco 0.085 0.016 1.05 × 10−7 2.45 × 10−7 4.31 × 10−6 1.59 1.43

Breast Income 0.145 0.060 0.0172 0.0192 0.1379 2.69 1.42

Myeloma Tobacco 0.029 0.006 2.86 × 10−6 5.72 × 10−6 1.03 × 10−4 1.60 1.42

Anus Alcohol 0.066 0.027 0.0140 0.0158 0.1263 2.18 1.36

Breast Tobacco 0.037 0.008 1.21 × 10−5 2.24 × 10−5 4.01 × 10−4 1.53 1.36

Hodgkin’s Income 0.176 0.082 0.0325 0.0338 0.1792 3.75 1.35

Kidney Tobacco 0.045 0.011 4.32 × 10−5 7.75 × 10−5 0.0014 1.50 1.32

Lung Tobacco 0.032 0.008 0.0002 0.0003 0.0046 1.47 1.29

Hodgkin’s Tobacco 0.023 0.007 0.0011 0.0016 0.0237 1.45 1.25

Non-Hodgkin’s
Lymphoma Tobacco 0.041 0.013 0.0016 0.0022 0.0294 1.42 1.23

Pancreas Tobacco 0.031 0.011 0.0039 0.0048 0.0551 1.39 1.19

Colorectum Tobacco 0.025 0.009 0.0041 0.0050 0.0551 1.39 1.19

All Cancers Tobacco 0.039 0.017 0.0256 0.0280 0.1792 1.68 1.19

Stomach Tobacco 0.030 0.011 0.0077 0.0089 0.0842 1.37 1.17

Ovary Tobacco 0.033 0.016 0.0418 0.0418 0.1792 1.31 1.05

Table key: β-Estimate—estimate of the regression coefficient; Std. Error—standard error of the regression
coefficient; p-value—significance level; P. Adj. Holm—p-value adjusted for multiple testing by the method of
Holm; Adj. P. FDR—p-value adjusted for multiple testing by the false discovery rate method of Benjamini and
Hochberg; E-value—expected value required of some unknown confounder covariate with both the exposure and
the outcome to explain the observed effect; lower bound of the E-value—the 95% lower bound of the confidence
interval of the E-value.
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Table 9. Summary table for positive significant terms in additive panel model.

Term Count

Negative
Total of
p-Value

Exponents

Mean of the
Negative
p-Value

Exponents

Median of
the Negative

p-Value
Exponents

Total of the
Lower

E-Value
Exponents

Mean of the
Lower

E-Value
Exponents

Median of
the Lower

E-Value
Exponents

Last Month’s
Cannabis 19 189 9.95 8 341 17.95 17

Herb. THC 21 551 26.24 18 165 7.86 7

Resin. THC 5 13 2.6 2 5 1.00 0

Income 7 29 4.14 5 1 0.14 0

Alcohol 4 17 4.25 2 0 0 0

Tobacco 14 55 3.93 2.5 0 0 0

Table key: Term—Relates to the number of models which include the cited independent covariate as significant.
The other columns in this table relate to the described parameters (see text).

3.3.2. Interactive Panel Modelling
No Temporal Lags (Unlagged)

A three-way interaction term was introduced between tobacco use, last month’s
cannabis use and the THC concentration of cannabis herb into the above additive model.
The output from this model is shown as Supplementary Table S27. Significant terms are
extracted (Table 10) and summarised in tabular (Table 11) and graphical (Figure 14) formats.
Table 10 is ordered by descending minimum E-value. It is clear from this table that cannabis
terms dominate the top of this table and tobacco terms are near the bottom. These findings
are reflected in the tabular and graphical summaries provided (Table 11 and Figure 14),
which again show that the effect of terms, including cannabis, are much more potent than
the known carcinogens tobacco and alcohol.

Two-Year Temporal Lags

This modelling procedure was repeated at two years of temporal lags. Model output
appears as Supplementary Table S28 and the reduced tabulation consisting of significant
positive terms appears as Supplementary Table S29. The terms of Supplementary Table S29
are then summarised in Supplementary Table S30 and displayed graphically in
Supplementary Figure S24. It is again noted that the cannabis terms preponderate over
tobacco, alcohol and income terms in all four panels.

Four-Year Temporal Lags

The above-described interactive panel model was run at four years of temporal lag.
Full model outputs are shown in Supplementary Table S31, the reduced model with
positive significant terms is shown in Supplementary Table S32 and the summary of
this model appears in Supplementary Table S33 and Supplementary Figure S25. From
Supplementary Figure S25, it is clear that the sum of the negative p-value exponents is
greater for tobacco than for the other covariates. However, for the other three metrics, it is
clear that the impact of the measures of cannabis predominate.

Six-Year Temporal Lags

A similar exercise was conducted at six years of temporal lags. Interactive panel model
output appears as Supplementary Table S34, positive and significant terms are shown in
Supplementary Table S35 and these are summarised by term in Supplementary Table S36
and Supplementary Figure S26. Cannabis-related terms again predominate in all four
panels. For both the numbers of cancers implicated and the total of the negative p-value
exponents, tobacco comes in second place for terms related to cannabis exposure.
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Figure 13. Graphical summary of additive panel model. (A) number of cancers implicated by substance, (B) Totals of (negative) p-value exponents by substance,
(C) Logarithm (total of minimum E-Value Exponents) by substance—note logarithmic scale and (D) average of minimum E-value exponents by substance—note
logarithmic scale.
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Table 10. Significant positive terms from interactive panel regression.

Cancer Term β-
Estimate

Std.
Error p-Value Adj. P. FDR Adj. P.

Holm
E-Value
Estimate

E-Value 95%
Lower Bound

Colorectum Herb. THC 55.387 5.081 1.17 × 10−26 1.13 × 10−25 3.14 × 10−24 8.51 × 1030 2.72 × 1025

Breast Herb. THC 37.005 3.771 4.69 × 10−22 3.59 × 10−21 1.22 × 10−19 7.65 × 1027 2.43 × 1022

Gallbladder and
Biliary Herb. THC 20.744 2.892 1.41 × 10−12 6.28 × 10−12 3.28 × 10−10 1.84 × 1026 1.53 × 1019

Oropharynx_Broad Herb. THC 23.856 4.274 4.15 × 108 1.24 × 10−7 8.26 × 10−6 1.31 × 1026 1.17 × 1017

All Cancers Herb. THC 12.034 2.019 4.45 × 109 1.46 × 10−8 9.26 × 10−7 1.41 × 1023 4.48 × 1015

Thyroid Herb. THC 20.386 3.101 7.61 × 10−11 2.80 × 10−10 1.67 × 10−8 2.72 × 1021 1.40 × 1015

Anus Herb. THC 13.789 2.229 8.74 × 10−10 3.03 × 10−9 1.86 × 10−7 1.74 × 1020 8.63 × 1013

Testis Herb. THC 33.843 6.241 7.22 × 108 2.03 × 10−7 1.39 × 10−5 5.43 × 1017 2.80 × 1011

Stomach Herb. THC 24.735 4.252 7.31 × 109 2.28 × 10−8 1.49 × 10−6 4.63 × 1016 1.46 × 1011

Oropharynx Resin. THC 7.349 0.625 4.34 × 10−22 3.40 × 10−21 1.13 × 10−19 1.92 × 1011 2.86 × 109

Corpus Uteri Herb. THC 25.436 5.293 1.70 × 106 4.16 × 10−6 3.01 × 10−4 6.37 × 1013 2.03 × 108

Prostate Herb. THC 24.791 5.498 7.03 × 106 1.65 × 10−5 1.21 × 10−3 9.35 × 1012 2.98 × 107

Oesophagus Herb. THC 13.982 3.228 1.58 × 105 3.58 × 10−5 2.65 × 10−3 3.05 × 1012 9.59 × 106

Leukaemia—
Lymphoid

LM.
Cannabis:

Herb. THC
7.397 3.030 1.57 × 102 2.59 × 10−2 1.0000 2.60 × 1023 7.91 × 104

Melanoma Herb. THC 10.965 3.151 5.17 × 104 1.03 × 10−3 7.76 × 10−2 1.26 × 1010 3.90 × 104

Cervix Herb. THC 13.081 5.359 1.48 × 102 2.46 × 10−2 1.00 1.47 × 107 45.71

Oesophagus Resin. THC 1.763 0.155 1.11 × 10−28 1.27 × 10−27 3.04 × 10−26 68.18 36.84

All Cancers
nNMSC

Tobacco:
Herb. THC 0.527 0.059 9.85 × 10−19 5.87 × 10−18 2.45 × 10−16 48.59 23.92

Oropharynx Income 1.024 0.191 3.81 × 10−7 1.01 × 10−6 7.12 × 105 67.24 18.20

Stomach LM.
Cannabis 1.283 0.096 3.16 × 10−38 6.28 × 10−37 8.98 × 10−36 13.60 10.06

Kidney Herb. THC 6.010 2.758 2.95 × 10−2 4.60 × 10−2 1.00 2.69 × 106 7.94

Colorectum LM.
Cannabis 1.323 0.115 2.41 × 10−29 3.27 × 10−28 6.69 × 10−27 10.26 7.56

Myeloma Resin. THC 0.526 0.090 6.60 × 10−9 2.12 × 10−8 1.36 × 10−6 14.34 7.06

Ovary Herb. THC 9.381 4.345 3.10 × 10−2 4.76 × 10−2 1.00 2.37 × 106 6.91

Larynx Resin. THC 0.796 0.145 4.56 × 10−8 1.33 × 10−7 8.99 × 10−6 10.56 5.48

Larynx LM.
Cannabis 0.612 0.068 8.34 × 10−19 5.08 × 10−18 2.09 × 10−16 6.93 5.05

Leukaemia—
Lymphoid Alcohol 0.164 0.021 4.81 × 10−13 2.24 × 10−12 1.13 × 10−10 5.96 4.29

Breast LM.
Cannabis 0.628 0.086 3.61 × 10−13 1.71 × 10−12 8.51 × 10−11 5.32 3.83

Thyroid LM.
Cannabis 0.433 0.065 4.51 × 10−11 1.75 × 10−10 1.00 × 10−8 5.07 3.57

Pancreas Herb. THC 5.546 2.709 4.09 × 10−2 6.06 × 10−2 1.00 1.14 × 106 3.00

Hodgkin’s LM.
Cannabis 0.253 0.044 1.54 × 10−8 4.64 × 10−8 3.08 × 10−6 4.28 2.98

Gallbladder and
Biliary

Tobacco: LM.
Cannabis:

Herb. THC
0.266 0.034 7.85 × 10−15 4.10 × 10−14 1.90 × 10−12 3.72 2.95

Leukaemia—
Myeloid

LM.
Cannabis:

Herb. THC
10.783 5.449 4.96 × 10−2 7.24 × 10−2 1.00 1.08 × 1019 2.67
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Table 10. Cont.

Cancer Term β-
Estimate

Std.
Error p-Value Adj. P. FDR Adj. P.

Holm
E-Value
Estimate

E-Value 95%
Lower Bound

Oropharynx Tobacco:
Herb. THC 0.509 0.187 7.31 × 10−3 1.27 × 10−2 9.36 × 10−1 11.00 2.66

Leukaemia—
Myeloid Alcohol 0.195 0.037 6.00 × 10−7 1.53 × 10−6 1.09 × 10−4 3.78 2.63

Corpus Uteri LM.
Cannabis 0.611 0.120 3.94 × 10−7 1.04 × 10−6 7.34 × 10−5 3.64 2.55

Gallbladder and
Biliary

LM.
Cannabis 0.252 0.055 5.50 × 10−6 1.31 × 10−5 9.57 × 104 3.55 2.40

Colorectum
Tobacco: LM.

Cannabis:
Herb. THC

0.453 0.069 5.71 × 10−11 2.18 × 10−10 1.26 × 10−8 2.96 2.37

Myeloma Income 0.137 0.023 6.68 × 10−9 2.12 × 10−8 1.37 × 10−6 2.77 2.19

Testis Income 0.440 0.076 7.35 × 10−9 2.28 × 10−8 1.49 × 10−6 2.76 2.18

Prostate LM.
Cannabis 0.512 0.125 4.20 × 10−5 9.14 × 10−5 6.81 × 10−3 3.05 2.08

Prostate Income 0.372 0.054 9.01 × 10−12 3.63 × 10−11 2.03 × 10−9 2.47 2.08

Stomach
Tobacco: LM.

Cannabis:
Herb. THC

0.317 0.058 4.27 × 10−8 1.26 × 10−7 8.46 × 10−6 2.63 2.07

Thyroid
Tobacco: LM.

Cannabis:
Herb. THC

0.202 0.038 9.80 × 10−8 2.73 × 10−7 1.88 × 10−5 2.62 2.06

All Cancers Alcohol 0.092 0.013 5.34 × 10−13 2.45 × 10−12 1.25 × 10−10 2.36 2.03

Oropharynx Tobacco 0.148 0.033 1.44 × 10−5 3.27 × 10−5 2.42 × 10−3 2.71 2.00

Breast
Tobacco: LM.

Cannabis:
Herb. THC

0.267 0.051 1.98 × 10−7 5.47 × 10−7 3.78 × 10−5 2.54 2.00

Anus
Tobacco: LM.

Cannabis:
Herb. THC

0.138 0.027 4.91 × 10−7 1.26 × 10−6 8.99 × 10−5 2.55 1.98

Breast Income 0.216 0.037 8.22 × 10−9 2.53 × 10−8 1.66 × 10−6 2.25 1.87

Non-Hodgkin’s
Lymphoma

Tobacco:
Herb. THC 0.314 0.103 2.26 × 10−3 4.19 × 10−3 3.12 × 10−1 3.15 1.82

Lung Tobacco:
Herb. THC 0.186 0.061 2.51 × 10−3 4.62 × 10−3 3.44 × 10−1 3.11 1.80

Brain Income 0.136 0.027 7.04 × 10−7 1.76 × 10−6 1.27 × 10−4 2.09 1.72

Gallbladder and
Biliary Tobacco 0.072 0.005 1.16 × 10−41 2.89 × 10−40 3.34 × 10−39 1.76 1.68

Larynx Alcohol 0.097 0.010 8.57 × 10−22 6.38 × 10−21 2.22 × 10−19 1.76 1.64

Colorectum Resin. THC 0.604 0.242 1.28 × 10−2 2.14 × 10−2 1.00 3.74 1.64

Prostate
Tobacco: LM.

Cannabis:
Herb. THC

0.253 0.074 6.94 × 10−4 1.37 × 10−3 1.03 × 10−1 2.03 1.53

Kidney
Tobacco: LM.

Cannabis:
Herb. THC

0.127 0.037 7.28 × 10−4 1.43 × 10−3 1.07 × 10−1 2.03 1.52

Colorectum Tobacco 0.104 0.007 1.16 × 10−-46 4.95 × 10−45 3.39 × 10−44 1.54 1.49

Breast Tobacco 0.074 0.005 5.07 × 10−43 1.51 × 10−41 1.47 × 10−40 1.53 1.47

Oesophagus
Tobacco: LM.

Cannabis:
Herb. THC

0.136 0.044 1.86 × 10−3 3.48 × 10−3 2.60 × 10−1 1.96 1.45

Stomach Tobacco 0.076 0.006 3.92 × 10−37 6.88 × 10−36 1.11 × 10−34 1.50 1.44
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Table 10. Cont.

Cancer Term β-
Estimate

Std.
Error p-Value Adj. P. FDR Adj. P.

Holm
E-Value
Estimate

E-Value 95%
Lower Bound

Colorectum Alcohol 0.103 0.017 7.58 × 10−10 2.66 × 10−9 1.62 × 10−7 1.54 1.41

Pancreas
Tobacco: LM.

Cannabis:
Herb. THC

0.108 0.037 3.44 × 10−3 6.22 × 10−3 4.62 × 10−1 1.91 1.40

Ovary LM.
Cannabis 0.249 0.099 1.16 × 10−2 1.97 × 10−2 1.00 2.26 1.40

Corpus Uteri Tobacco 0.077 0.007 1.75 × 10−25 1.58 × 10−24 4.66 × 10−23 1.43 1.37

Oropharynx Tobacco: LM.
Cannabis 0.060 0.020 2.75 × 10−3 5.02 × 10−3 3.74 × 10−1 1.76 1.37

All Cancers
nNMSC

Tobacco: LM.
Cannabis 0.014 0.001 1.10 × 10−28 1.27 × 10−27 3.01 × 10−26 1.41 1.36

Ovary Tobacco 0.056 0.006 3.11 × 10−20 2.21 × 10−19 8.00 × 10−18 1.39 1.34

Prostate Tobacco 0.068 0.008 7.41 × 10−19 4.60 × 10−18 1.86 × 10−16 1.38 1.33

Corpus Uteri
Tobacco: LM.

Cannabis:
Herb. THC

0.188 0.072 0.0085 0.0147 1.0000 1.83 1.32

Hodgkin’s
Tobacco: LM.

Cannabis:
Herb. THC

0.067 0.026 0.0091 0.0157 1.0000 1.84 1.31

Bladder Resin. THC 0.266 0.125 0.0330 0.0505 1.0000 3.30 1.30

Testis Tobacco 0.063 0.009 2.70 × 10−11 1.06 × 10−10 6.02 × 10−9 1.37 1.29

Prostate Alcohol 0.075 0.018 3.02 × 10−5 6.71 × 10−5 0.0050 1.41 1.27

Oesophagus Alcohol 0.041 0.011 1.26 × 10−4 2.63 × 10−4 0.0198 1.39 1.25

Stomach Alcohol 0.053 0.014 1.41 × 10−4 2.92 × 10−4 0.0219 1.39 1.25

Oropharynx_Broad Tobacco 0.037 0.012 0.0017 0.0033 0.2432 1.42 1.23

Larynx Tobacco 0.024 0.004 9.70 × 10−9 2.95 × 10−8 1.95 × 10−6 1.29 1.22

Melanoma Tobacco: LM.
Cannabis 0.020 0.002 4.91 × 10−18 2.87 × 10−17 1.22 × 10−15 1.25 1.22

Liver Tobacco: LM.
Cannabis 0.018 0.002 3.69 × 10−16 2.03 × 10−15 9.03 × 10−14 1.25 1.21

Cervix Alcohol 0.059 0.018 0.0008 0.0016 0.1181 1.36 1.21

Breast Alcohol 0.041 0.012 0.0011 0.0020 0.1510 1.35 1.20

Lung Tobacco: LM.
Cannabis 0.011 0.001 5.55 × 10−15 2.95 × 10−14 1.35 × 10−12 1.23 1.20

Melanoma Income 0.073 0.031 0.0183 0.0297 1.0000 1.60 1.19

Bladder LM.
Cannabis 0.126 0.059 0.0332 0.0505 1.0000 2.08 1.19

Pancreas Tobacco: LM.
Cannabis 0.014 0.002 1.62 × 10−12 7.01 × 10−12 3.73 × 10−10 1.22 1.18

Melanoma
Tobacco: LM.

Cannabis:
Herb. THC

0.095 0.043 0.0266 0.0420 1.0000 1.73 1.18

Oesophagus Tobacco: LM.
Cannabis 0.015 0.002 7.62 × 10−11 2.80 × 10−10 1.67 × 10−8 1.21 1.17

Kidney Tobacco: LM.
Cannabis 0.013 0.002 2.33 × 10−10 8.48 × 10−10 5.07 × 10−8 1.21 1.17

Brain
Tobacco: LM.

Cannabis:
Herb. THC

0.081 0.038 0.0308 0.0476 1.0000 1.71 1.15

Thyroid Alcohol 0.027 0.011 0.0156 0.0258 1.0000 1.33 1.12
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Table 10. Cont.

Cancer Term β-
Estimate

Std.
Error p-Value Adj. P. FDR Adj. P.

Holm
E-Value
Estimate

E-Value 95%
Lower Bound

Anus Tobacco: LM.
Cannabis 0.006 0.001 6.92 × 10−5 0.0001 0.0110 1.16 1.11

Non-Hodgkin’s
Lymphoma

Tobacco: LM.
Cannabis 0.009 0.002 6.70 × 10−5 0.0001 0.0107 1.16 1.11

Testis
Tobacco: LM.

Cannabis:
Herb. THC

0.154 0.076 0.0422 0.0619 1.0000 1.69 1.09

All Cancers Tobacco: LM.
Cannabis 0.013 0.006 0.0307 0.0476 1.0000 1.31 1.08

Cervix Tobacco 0.017 0.007 0.0192 0.0310 1.0000 1.17 1.06

Table key: β-Estimate—estimate of the regression coefficient; Std. Error—standard error of the regression
coefficient; p-value—significance level; P. Adj. Holm—p-value adjusted for multiple testing by the method of
Holm; Adj. P. FDR—p-value adjusted for multiple testing by the false discovery rate method of Benjamini and
Hochberg; E-value—expected value required of some unknown confounder covariate with both the exposure and
the outcome to explain the observed effect; lower bound of the E-value—the 95% lower bound of the confidence
interval of the E-value.

3.3.3. Multivariable Conclusions

The above results demonstrate that in these fixed-effects and panel multivariable
regression models, the impact of cannabis is greater than that of the other covariates. A
major remaining issue is how each of the different cancers assessed performed across
the various models. This issue is addressed in Table 12, which sets out the six different
multivariable models and considers only those cancers which were shown to be significant
after adjustment for multiple testing (by the Holm’s method).

Table 11. Summary of significant positive terms from interactive panel regression.

Term Count

Negative
Total of
p-Value

Exponents

Mean of the
Negative
p-Value

Exponents

Median of
the Negative

p-Value
Exponents

Total of the
Lower

E-Value
Exponents

Mean of the
Lower

E-Value
Exponents

Median of
the Lower

E-Value
Exponents

Herb. THC 17 128 7.53 7 174 10.24 11

Resin. THC 6 60 10.00 7.5 10 1.67 0

Herb. THC:
Resin. THC 2 2 1.00 1 4 2.00 2

Income 7 48 6.86 8 1 0.14 0

Last Month’s
Cannabis 11 124 11.27 7 1 0.09 0

Tobacco: Herb. THC 4 24 6.00 2 1 0.25 0

Alcohol 11 76 6.91 4 0 0 0

Tobacco 12 254 21.17 18.5 0 0 0

Tobacco: Last
Month’s Cann. 11 115 10.45 10 0 0 0

Tobacco: LM. Cann:
Herb. THC 15 67 4.47 3 0 0 0

Table key: Term—relates to the number of models which include the cited independent covariate as significant.
The other columns in this table relate to the described parameters.
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Figure 14. Graphical summary of interactive panel model. (A) number of cancers implicated by substance, (B) Totals of (negative) p-value exponents by substance,
(C) Logarithm (total of minimum E-Value Exponents) by substance—note logarithmic scale and (D) average of minimum E-value exponents by substance—note
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Table 12. Summary of cancers found to be significant in multivariable models.

No. Mixed_Effects Panel_Additive Panel_Interactive Panel_2_Lags Panel_4_Lags Panel_6_Lags All Models 5/6 Models

1 All Cancers All Cancers All Cancers All Cancers All Cancers All Cancers 1

2 All Cancers nNMSC All Cancers nNMSC All Cancers nNMSC All Cancers nNMSC All Cancers nNMSC All Cancers nNMSC 1

3 Anus Anus Anus Anus

4 Bladder Bladder Bladder Bladder Bladder Bladder 1

5 Brain Brain Brain Brain Brain 1

6 Breast Breast Breast Breast Breast Breast 1

7 Cervix Cervix Cervix Cervix Cervix 1

8 Colorectum Colorectum Colorectum Colorectum Colorectum Colorectum 1

9 Corpus Uteri Corpus Uteri Corpus Uteri Corpus Uteri

10 Gallbladder and Biliary Gallbladder and Biliary Gallbladder and Biliary Gallbladder and Biliary

11 Hodgkin’s Hodgkin’s Hodgkin’s Hodgkin’s Hodgkin’s Hodgkin’s 1

12 Kidney Kidney Kidney Kidney Kidney Kidney 1

13 Larynx Larynx Larynx Larynx Larynx Larynx 1

14 Leukaemia—Lymphoid Leukaemia—Lymphoid Leukaemia—Lymphoid

15 Leukaemia—Myeloid Leukaemia—Myeloid

16 Liver Liver Liver Liver Liver 1

17 Lung Lung Lung Lung Lung 1

18 Melanoma Melanoma Melanoma Melanoma Melanoma Melanoma 1

19 Myeloma Myeloma Myeloma Myeloma Myeloma Myeloma 1

20 Non-Hodgkin’s Lymphoma Non-Hodgkin’s Lymphoma Non-Hodgkin’s Lymphoma Non-Hodgkin’s Lymphoma Non-Hodgkin’s Lymphoma Non-Hodgkin’s Lymphoma 1

21 Oesophagus Oesophagus Oesophagus Oesophagus Oesophagus Oesophagus 1

22 Oropharynx Oropharynx Oropharynx Oropharynx 1

23 Oropharynx_Broad Oropharynx_Broad Oropharynx_Broad Oropharynx_Broad

24 Ovary Ovary Ovary Ovary Ovary Ovary 1

25 Pancreas Pancreas Pancreas Pancreas Pancreas Pancreas 1

26 Prostate Prostate Prostate Prostate Prostate Prostate 1

27 Stomach Stomach Stomach Stomach Stomach Stomach 1

28 Testis Testis Testis Testis Testis 1

29 Thyroid Thyroid Thyroid Thyroid Thyroid Thyroid 1

Totals 17 6

Table key: The columns relate to the various model types listed.
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As shown in this Table, 17 groups of cancers were related to the metrics of cannabis
exposure on all multivariable models used, including: all cancers, ACnNMSC and cancers
of the: bladder, breast, colorectum, Hodgkin’s disease, kidney, larynx, melanoma, myeloma,
non-Hodgkin’s lymphoma, oesophagus, ovary, pancreas, prostate, stomach and thyroid. In
five of the six models, cancers of the brain, cervix uteri, liver, lung and testis also tested
positive to stringent multiple testing adjustment. Oropharyngeal cancer should probably
also be included in this group, as it was included in four models when strictly defined and
in four models when broadly defined as cancer of the upper aerodigestive tract.

Notable amongst this list was several cancers of the reproductive tract, including the
germinal cells of the testis and ovary and also the prostate and breast.

4. Discussion
4.1. Main Results and Interpretation

The main results of this study reveal that cannabis is indeed related to the inci-
dence of many cancers in both bivariate- and multivariable-adjusted models and strongly
confirm results, which have been previously described elsewhere, particularly in the
USA [17,18,44,167–169,211–215].

In most comparisons with tobacco and alcohol, cannabis was a much more potent
carcinogen, particularly when metrics relating to E-values were considered. Moreover, the
unequivocal involvement of tumours of the reproductive tract, including the testis, ovary,
breast and prostate, along with various leukaemias—some of which occur in childhood—all
point to clinically significant heritable genotoxicity impacting subsequent generations.

Therefore, the answer to the four questions posed in the Introduction were all affirma-
tive. Cannabis was confirmed to be an important human carcinogen, and results similar to
those reported elsewhere in terms of the tumours implicated were identified; cannabis has
again been shown to be a more potent carcinogen than tobacco or alcohol and evidence of
reproductive and inheritable genotoxicity and carcinogenicity has again been confirmed.

This paper presents strong evidence that cannabis exposure is linked to the incidence
of many cancers in Europe using bivariate analysis and that these changes were actually
increased by multivariate adjustment. The slope of many cancer incidence–substance
exposure trend lines at bivariate analysis is obviously more strongly positive for metrics of
cannabis exposure than with tobacco and alcohol (Figures 1–6) and these appearances are
confirmed by quantitative bivariate and multivariate analyses (Tables 1–4 and 6–12 and
Supplementary Tables S33–S36) and mathematical collations of these data (Tables 9 and 11,
Supplementary Tables S33 and S36). Findings are robust to different regression algorithms
used, with similar results being obtained from both mixed-effects and panel regression
models (Supplementary Table S24 and Table 8).

4.2. Cannabis-Linked Cancers

The question of which cancers should be considered to be linked with cannabis ex-
posure emerges from this study. This issue should be considered in relation to tumours
considered to be tobacco- and alcohol-related, where the significant slope of the linear
regression trend line and its associated metrics (RR, AFE and PAR at categorical analysis)
seems to be the major issue deciding the matter. The 22 tumours identified at multivari-
able regression should be included in this list of malignant disorders. All of the tumours
identified on bivariate regression were also identified on multivariable panel regression.
Whilst oropharyngeal cancer (defined both locally to the oropharynx and more broadly
across the upper aerodigestive tract) was noted to be associated in four of the six mul-
tivariable models, it was also noted in all of the linear models and in two of the linear
models (for cannabis herb and resin THC concentration) after adjustment for multiple
testing (Table 5 and Supplementary Table S12).

Given that both acute myeloid and lymphoid leukaemias have been previously identi-
fied as being cannabis-associated [35,36,212,216], an interesting question relates to the find-
ings of this study in relation to this group of diseases. Lymphoid leukaemia was identified in
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two bivariate models and three multivariable models. Myeloid leukaemia was identified in
three linear models and two multivariable models. For lymphoid leukaemia, its minimal E-
values were 4.42 × 1014 and 51.55 at linear regression (Supplementary Table S5 and Table 3)
and 2.67 × 10−22, 2.67 × 1022 and 7.90 × 104, respectively, on multivariable testing
(Supplementary Tables S24 and S28 and Table 8). Based on these results and the above-cited
salience of the bivariate relationships in epidemiological studies, these leukaemias should
be included in the list of cannabis-related cancers. Unfortunately, detailed information on
acute lymphoid leukaemia and acute myeloid leukaemia was not available to the present
researchers and this study must await a subsequent investigation.

Brain cancer was identified on two linear models and four multivariable models.
Its minimal E-values on bivariate testing were 19.93 and 5.20 (Tables 3 and 4) and on
multivariable testing were 9.00, 2.09, 1.62, 2.18 and 276.21 (Tables 8, 10 and 12 and
Supplementary Table S28). Irrespective of the pathways of neurocarcinogenesis, this fits
with modern studies, which clearly demonstrate that an altered brain neurotransmission is
a direct stimulant to the growth of both primary [217,218] and secondary [219] intracere-
bral tumours. Given the well-known high density of intracerebral cannabinoid receptors
and the established neuroactivity of a diverse range of phytocannabinoids, this would
fit with the cannabinoid-modulated neurotransmission potentiation of a pathway to neu-
roglial tumourigenesis. Indeed, brain cancer has previously been linked with cannabis
exposure [23,220].

Thus, the final list of the 25 cancer types related to cannabis in this study is: all cancers,
ACnNMSC, bladder, brain, breast, cervix, colorectum, Hodgkin’s, kidney, larynx, myeloid
and lymphoid leukaemias, liver, lung, melanoma, myeloma, non-Hodgkin’s lymphoma,
oesophagus, oropharyngeal tumours both broadly and narrowly defined, ovary, pancreas,
prostate, stomach, testis and thyroid cancer.

4.3. Specific Cancers

Some of the bivariate space–time relationships described graphically in maps with
the THC concentrations of cannabis herb for cancers, such as all cancers, excluding non-
melanoma skin cancer (ACnNMSC), and cancers of the breast, liver, pancreas, lung and non-
Hodgkin’s lymphoma (Figures 12–14), are particularly striking. Indeed, in the case of breast
cancer, the map series shows that the whole of Europe was transformed from red-brown
(low cannabis and moderate-to-high incidences of breast cancer) to the whole continent
being shaded in pink to purple (both cannabis and breast cancer high, respectively) as both
breast cancer (Supplementary Figure S1) and cannabis exposure (Supplementary Figure S1
and Figure 11) rates rose across the decades of this study (Figure 13). Far from this
being a mere circumstantial association, the existence of a host of cellular, biological and
epigenomic mechanisms (mentioned in both the Introduction and below)—together with
the mathematical and statistical methodologies employed throughout this study using the
classical tools of causal inference, as well as a strong corroboration from parallel findings
in the USA [44,167–169,211]—clearly point to the causal nature of this relationship. Given
that breast cancer is the most common form of cancer in many nations, this is a signal
finding indeed and supports the highly salient remarks above in relation to the rates of all
cancers and ACnNMSC. Importantly, this European trend linking the rise in breast cancer
to increasing cannabis use has also been recently confirmed in the USA in a space–time and
formal causal inferential paradigm [211].

The observations relating to liver cancer (Figure 14) are also highly salient, given that
the incidence of this tumour is growing quickly around the world [18,215,221–224]. Whilst
viral causes in the context of international migration trends are usually invoked by way of
explanation for this trend, the current data suggest that cannabis may well be a significant
albeit usually overlooked environmental risk factor in this aetiological complex [222,223]
as has been previously observed [18,21,215,225].

Similarly, a recent study covering 65% of the USA from Cedar Mt. Sinai Cancer Centre
found that the incidence of pancreatic cancer is rising across the USA [226]. The rise is
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most marked among young women, particularly amongst African Americans. Whereas
the annual adjusted incidence rate of pancreatic cancer in men younger than 55 years is
increasing by 0.62% annually, it is rising almost four times as fast in young women in this
age bracket at 2.36%. In patients from 15 to 34 years of age, the disease was increasing
exponentially in both sexes. In females, the rate of annual average percentage (AAPC) rise
was a remarkable 6.45% (5.36–7.55%) and 2.97% (1.69–4.27%) in males. The use of cannabis
by young females is also rising rapidly, including during pregnancy. Based upon these and
similar results, it would appear that cannabis use is an important community cancerogenic
risk factor, which has likely been overlooked in public health discussions to the time of
writing [227,228].

It is also of interest that cannabis has recently been shown to drive the 50% increase
in total paediatric cancer in the USA [41] and the doubling in the commonest cancer of
childhood acute lymphoid leukaemia in USA [212]. Cannabis was also shown to be the
primary driver of the doubling of testicular cancer rates in young men since 1975 [17,214].

Multivariable models lagged to two, four and six years were also studied. In general,
the effect of temporal lagging was to increase the effects described in non-lagged models.

4.4. Reproductive Cancers

The present results implicate testicular and prostate cancers in males, and breast,
ovarian, uterine and cervix cancers in females. Indeed, the involvement of a number of
cancers of the reproductive tract in both sexes is noteworthy and of great concern for
the multigenerational passage of genotoxic and/or epigenotoxic damage. The concept
of heritable mutagenesis is also supported by the identification of leukaemias of various
types in this analysis. Both myeloid and lymphoid leukaemias can occur in childhood, and
indeed, acute lymphoid leukaemia is the most common form of cancer for children under
five years of age, accounting for around 25% of the tumours in toddlers under five.

4.5. Cannabis Herb THC Concentration

It was somewhat surprising to us that the main cannabis-related covariate, which was
most strongly related to malignant outcomes, was the THC concentration of cannabis herb,
as shown in many tables. However, as cannabis herb is likely much more widely available
and used than other cannabis products, it does make sense in a real-world application that
this would be a primarily important metric of cannabis exposure. It has been suggested
that it is the convergence of cannabis use prevalence, the intensity of use and cannabis herb
and resin concentration, which is of the greatest concern [110], along with this important
exploration of the most incisive cannabis-related metric, merits further investigation by
subsequent research.

4.6. Comparison with USA Data

The other major dataset which is available for a similar comparison is the USA dataset,
which also contains information on tumour type and drug-use exposures. Published
reports, which performed similar analyses on the USA data to those described here, have
only recently begun to appear in the medical literature of the USA data. One recent paper
did find that breast, liver, thyroid and pancreatic cancer and acute myeloid leukaemia were
elevated in the USA in relation to cannabis exposure. Another paper found acute lymphoid
leukaemia to be elevated in association with community cannabis exposure [212]. Since
this is the most common form of early childhood cancer, it is perhaps to be expected that
cannabis was found to be a driver of rising paediatric cancer rates across the USA [212].
Importantly, breast, thyroid, liver and pancreatic cancers were all positively identified in
the present study in the categorical analysis of cannabis herb (Table 7).

Hence, there is good agreement between these two major datasets, which together are
understood to comprise the majority of the extant publicly available data in the world at
this time. This further supports our confidence in the present study conclusions.
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The present results are also supported by recent analyses of the USA data [167–169].
Importantly, breast cancer was recently also linked with cannabis exposure in the USA.

4.7. Causality

There are many medical questions which would be difficult, expensive or time-
consuming to investigate by formal randomised controlled trials, which are not always
timely, possible or even ethical. Since many such contexts exist in medicine, it is often
important to maximise the opportunity presented by real-world pseudo-experimental
situations, which present themselves [3] and which can meaningfully inform policy-makers
before multiple-outcome randomised clinical trials can be organised [229].

Two of the major limitations which commonly plague observational studies are the
issue of non-comparability between groups and the related issue of unmeasured uncon-
trolled confounding covariates. It has been well-shown that inverse-probability weighting
(IPW), when applied to an observational study, can transform its findings from a merely
situational and local account by simply applying to that dataset into a pseudo-randomised
study from which causal inferences can be meaningfully drawn [230,231]. IPW has been
extensively applied to all multivariable panel models in the present analysis in order to
avail ourselves of its profound advantages.

Similarly, given an apparently or potentially causal association, it is possible to quantify
the degree of association required between both an exposure of interest and an outcome
of concern in order to obviate an apparently causal relationship. This value is known as
the E-value or expected value and has been computed in several of our tables. Similarly,
its 95% lower bound (the minimum E-value, mEV) can also be calculated and sets a lower
bound on this confidence interval. The many highly elevated mEV’s shown in our tables
provide a strong reassurance in these respects.

In this context, it is worth reviewing briefly the way these data intersect with the
qualitative causal criteria proposed in 1965 by Hill, which arose from the decade-long
debate on the nature of the tobacco–lung cancer relationship [232]. The present results
demonstrate a strong strength of association, consistency amongst studies, specificity (the
group of cannabis-related cancers is not identical to the group of tobacco- or alcohol-related
cancers), temporality, coherence with known data from elsewhere and in the laboratory,
biological plausibility, a dose–response biological gradient, analogy with similar situations
elsewhere and experimental confirmation.

For these reasons, our results may properly be considered to fulfil both quantitative
and qualitative epidemiological criteria for causality. We feel that these provocative results
strongly indicate on-going research to further explore mechanistic links experimentally in
the identified tumours.

4.8. Specific Cannabinoids

Our present understanding is that data relating to community exposure to various
individual cannabinoids is not generally available in Europe. Hence, we are not able to
comment from this dataset on the relative genotoxicity of the many diverse cannabinoid
compounds. It is clearly seen in the nature of the above results that THC itself is generally
and broadly implicated in all results for cannabis herb and resin. However, this finding by
no means exonerates other cannabinoids for which no readily accessible metric exists.

It is, however, pertinent in this respect that in the USA, THC, cannabinol, cannabigerol
and cannabidiol have all been implicated in carcinogenic environmental exposure by recent
epidemiological studies [44,48,212]. Since it is the central cannabinoid nucleus, known as
olevitol, which is a dihydroxylated benzene ring on the C-ring of cannabinoids, which
has been implicated in genotoxic cellular actions [132,233–236], it seems likely that the
carcinogenic effect is actually a class effect shared across many or most cannabinoids.
This is certainly the conclusion to which published and unpublished epidemiological data
clearly points.
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4.9. Mechanisms

Since the time of Bradford Hill and the tobacco–lung cancer debates of the 1950s,
the centrality of biologically plausible mechanistic pathways to establish a conceptual
mechanistic link between an exposure of concern and a pathology of interest has been
central to any discussion of potentially causal mechanisms. A wide variety of cannabinoids
have been implicated in multiple cellular and molecular pathogenic mechanisms. The issue
is complex and has been reviewed in detail elsewhere [63,65,154,155,157,237–242].

In summary, it may be considered that: cannabis smoke includes all of the tars and
other carcinogens found in tobacco smoke [33,34,243–245]; cannabis has well-described
effects dramatically increasing the mitotic and meiotic division error rates in both sperm
and oocytes [236,246,247]; cannabis, ∆9-tetrahydrocannabinol (THC), cannabidiol, cannabi-
nol and cannabichromene have classically described major toxic effects on chromosomes
[241,246,248] (including single- and double-stranded chromosomal breaks [241,246,248–251]
and chromosomal ring and chain formation [241,246]) with chromosomal shattering “chro-
mothripsis” [65], which is a major engine driving the genetic chaos of cancer [65,252–264],
with the oxidation of DNA nucleosides and thus, direct genotoxicity and mutagenicity [248],
with major changes of DNA methylation [137,153–158], which can be passed to subse-
quent generations [137,157] and which have also been identified in human sperm [137,157];
with a reduction in the gross levels of histone synthesis, which is a pro-oncogenic change
that necessarily opens up chromatin for dysregulated transcription [265–267]; and sev-
eral cannabinoids have well-established multiple adverse consequences on mitochondrial
metabolism [75,82,268,269] (including a reduced synthesis of the F1-ATPase [270]), which
have direct (via epigenomic substrate supply) and indirect (via mitonuclear shuttles and
metabolic crosstalk pathways) genomic and epigenomic impacts [164,271].

Cannabinoids also reduce tubulin synthesis [270]. Long polymers of tubulin form the
microtubules of the mitotic spindle, along which chromosomes slide during the chromoso-
mal separation of anaphase, and their disruption directly causes chromosomes to become
dislocated, therefore leading to micronucleus formation [65,247,256,272]. Microtubules also
form the spine of the sperm tail, and disruptions of the post-translational modifications of
this sophisticated “tubulin code” have been linked with highly aberrant sperm motility as
sperms swim around in circles and are not able to move progressively towards a normal
fertilisation target [273].

4.10. Carcinoma of the Testis

Since testicular cancer, including cancer of the testis, was strongly identified in the
present data, and since testicular cancer is the best validated of all cannabis-related can-
cers [4–7,10], some detailed consideration of the genetic, epigenetic and chromosomal
malignant biogenesis of this tumour is both of interest and of relevance.

4.11. Structural Observations

A total of 42% of genomes were involved.
It has been shown that testicular cancer predictably displays an isochromosome

12 together with gains of chromosomes 7, 8, 12, 21 and X along with losses of chromosomes
1, 11, 13,18 and Y [274]. Human genome project studies show that chromosomes 1, 7, 8,
11, 12, 13, 18, 21, X and Y have lengths of 246, 158, 146, 134, 132, 113, 76, 46, 153 and
50 megabases, respectively, implying a total chromosomal length of 1,254 megabases or
42% of the human genome of 3000 megabases [275].

4.12. Mechanistic Observations

A 6.5-fold acceleration of the incidence–oncogenic induction period.
The increased frequency of testicular cancer following cannabis exposure documented

in metanalysis at 2.6-fold was noted above [10]. As described above, testicular cancer is
noted to generally develop over 33 years and is based on an the activation of genotoxic
insults by the hormonal surge of puberty [8,9,11,14,274]. However, if one accepts a median
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age of cannabis exposure of 20 years, then it follows that testicular cancer develops fol-
lowing cannabis exposure over only 13 years, which represents a 2.5-fold acceleration in
the pre-oncogenic induction time from 33 to only 13 years. The 2.6-fold increase in inci-
dence and the 2.5-fold acceleration of oncogenic incubation suggest a (2.5 × 2.6=) 6.5-fold
elevation of an incidence–induction period metric.

4.13. Major Errors of Mitosis and Meiosis

Moreover, massive genomic hyperploidy and chromosomal over-replication has
also been demonstrated, following cannabis exposure of mammalian lymphocytes and
oocytes [247,272]. This fits with the one or two rounds of genomic doubling required in
testicular carcinogenesis [274].

Trisomies (of chromosomes 13, 18 and 21) and monosomies (of chromosome X, Turners
syndrome) are also well-documented following cannabis exposure [44–46,49,63], making
chromosomal mis-segregation a major feature of cannabis-related genotoxicity. This evi-
dence is corroborated by the well-known positive status of cannabis in the micronucleus
assay [276] and the documentation of lagging chromosomes [241,246,250,251,277,278].

One simplistic mechanism which may account for this is interference with tubulin
synthesis and acetylation, which has been documented to occur from cannabinoid expo-
sure [270] and which structurally disrupts the microtubules of the mitotic spindle, which
they comprise [65]. Cannabis disrupts tubulin synthesis both directly and epigenomi-
cally [161,275].

These concepts are elegantly illustrated in the cited references.
It is highly pertinent to note that chromosomal positioning on the mitotic spindle

is controlled by the kinetochore, which is a large 90-protein complex in mammals that
binds the centromeric chromatin of each chromosome to 25–30 microtubules of the mitotic
spindle [279]. Cannabis has been shown to broadly disrupt 14 of these key centrosomal
proteins along with many key kinetochore proteins by heritable epigenetic mechanisms.
Cannabis also disrupts the molecular kinesin and dynein–dynactin motors, which move
chromosomes to the positive and negative ends of the microtubule, respectively.

Furthermore, specialised histones occur in centromeric chromatin, including H3 vari-
ant CENP-A [280], which carry key epigenomic post-translational modifications (PTMs).
Primarily, among them, is the addition of a small ubiquitin-like modifier (SUMO) of pro-
teins, a process known as sumoylation. This is a key PTM, which controls the addition of a
complex set of further PTMs (methylation, acetylation, phosphorylation, ubiquitination,
etc.), which then act combinatorially to control kinetochore function [281]. Histone sumoy-
lation therefore acts as a key functional switch which controls the kinetochore function
and the release of the spindle-associated checkpoint (SAC), which allows the chromosomal
separation of anaphase to commence [279]. It may also be that a complex code of PTMs
underlies the apparent ability of cells to identify each chromosome, as indicated by the
relatively invariant nature of the chromosomes, which are predictably lost or duplicated in
testicular carcinoma [274].

It is therefore of great interest to learn that this histone sumoylation switch is pow-
erfully controlled by ∆9THC [282]. The application of ∆9THC in dividing cells causes
major disruptions of the kinetochore signalling to the spindle assembly checkpoint (SAC)
controller and leads to chromosomal mis-segregation errors. THC also directly affects
Mdm2 (murine double minute) and SUMO-1 protein and acts to directly activate P53, the
classical “guardian of the genome”. P53 in cannabis-exposed dividing cells can thus be
expected to be activated both directly via cannabinoids and indirectly by sensing DNA
breaks and damage. Oocyte mitotic errors are also a major feature of aging in human
oocytes [283].

That is to say that a major epigenomic mechanism acts to regulate centromeric chro-
matin through the vital stages of attachment to the mitotic spindle and chromosomal
segregation, and the epigenomic code controlling this sophisticated machinery is grossly
disrupted by cannabinoid application. Since this mechanism likely controls both chro-
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mosomal counting and chromosomal segregation, it becomes apparent that kinetochore
disruption plays a central role in both the induction of hyperploidy and chromosomal
mis-segregation errors and all of their downstream sequelae.

Moreover, the multi-hit nature of carcinogenesis is often described [284–288]. As
cannabinoids can deliver both double- and single-stranded DNA breaks and cause kineto-
chore disruption (hyperploidy and chromosomal mis-segregation), it becomes apparent
that cannabinoids are capable of delivering the multi-point genomic hit in themselves. This
also explains the dramatic effect on cell karyotype from minimal cannabis exposure (only a
few puffs) in classical cell morphology studies [241,247,249–251,272,278,289].

The concept of presumptive pericentromeric chromatin dysregulation also explains the
usual presence of an isochromosome 12, as the dysregulated pericentromeric epigenome
presumably directs the aberrant scission of the chromosome at the centromere to form the
isochromosome. The presence of KRAS, KIT and NRAS on this chromosome then confers a
growth advantage on the mutant clone and malignant tumourigenesis is the end result of
this process continued over time.

Combined with their important cannabinoid-related effects noted on the DNA methy-
lome described above, these observations altogether begin to address the extraordinary
issue of the dramatic acceleration both in incidence and oncogenic induction rate—which
together is 6.5-fold, as described above.

4.14. Scope of Chromosomal Involvement

It is of interest to consider the extent of the chromosomal landscape deranged by
cannabis. As noted above, the involvement of testicular cancer in cannabis carcinogenesis
directly implicates 42% of the human genome in direct genomic disruption.

Other reports have implicated acute lymphoid leukaemia in the spectrum of cannabis
carcinogenesis [212]. Chromosomal translocations between (at least) chromosomes, 4, 9,
10 and 11 are all well-described in that disorder [212,290]. Based on chromosomal lengths
quoted in the human genome project, this totals (191 + 136 + 135 + 134 + 49=) 645 megabases
of all 3000 megabases, or 21.5% in the human genome.

Reports from the congenital anomaly literature describe the implication of cannabis
exposure with various trisomies/monosomies affecting chromosomes 13, 18, 21 and
X and this sums up to (113 + 76 + 46 + 153=) 388 megabases or 12.9% of the human
genome [44–46,49–51,53,57,59,63].

If one adds the chromosomesdamaged in acute lymphoid leukaemia, testis cancer and
trisomies/monosomies all together, one reaches the impressive result of 1765 megabases,
or 59% of the human genome being directly affected by cannabis genotoxicity. Much of
this damage in terms of DNA breaks, pericentromeric chromatin dysfunction, and putative
breakage–fusion–bridge cycles is epigenetically mediated.

4.15. Epigenomic Effects

A profoundly important epigenome-wide association study was recently published,
looking at cannabis dependence and withdrawal with an 11-week period of documented
abstinence in between the two sampling times [137]. The online dataset accompanying
this paper contains many gene annotations for positive hits identified in the differentially
methylated DNA CpG screen in this work, including 487 hits for the term “cancer”, 112 hits
for “tumor”, 126 hits for “carcinoma”, 28 hits for “neoplasm”, 8 hits for “neoplasia”, 32 hits
for “leukemia” and 17 hits for “lymphoma”, totalling 810 hits for malignancy in all. This
makes cancerogenicity one of the major findings of this study and is clearly of direct
and major importance to the present review of pathophysiological mechanisms. These
important themes are too large to be considered in depth here and are considered in more
depth in related papers [65,105,107–109,136,137,238,291].
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4.16. Comparison to Tobacco and Alcohol

The effects of cannabis herb THC concentration were greater than those of tobacco and
alcohol via bivariate analysis (Tables 1 and 2 and Figures 1, 2 and 4) in an additive panel
model (Table 4 and Figure 6), an interactive panel model (Supplementary Table S22 and
Supplementary Figure S16), an interactive panel model at two lags (Table 8 and Figure 12),
an interactive panel model at four lags (Supplementary Table S26 and Supplementary
Figure S16) and in an interactive panel model at six lags (Supplementary Table S28 and
Supplementary Figure S20). Overall, in many cases, the effects of cannabis metrics greatly
exceeded those of tobacco and alcohol, as is well-demonstrated by the illustrations included
in this report.

4.17. Cocaine

The finding that cocaine exposure was significantly associated with 18 cancers (Tabular
Analysis) was noteworthy. However, it was also observed that there was a very strong
association between cocaine and cannabis use with Pearson’s R = 0.78 corresponding to a
significance level of 4.4 × 10−55 (Correlation Analysis). Moreover, in multiple regression
studies, the effect of cocaine was very often obviated by the cannabinoid covariates. It
therefore appears from these studies that cannabis alone or possibly cannabis–cocaine
co-exposure accounts for much of the cocaine signal. A further dissection of the relative
carcinogenicity of these two agents must await further research.

4.18. Generalizability

From a data analytical point of view, the European datasets are fabulously rich, and
even more so by comparison with other datasets available internationally, which are
relatively much more lean. A total of 170 cancer types are available in the detailed cancer
statistics from ECIS. Moreover, cannabis use is measured by several metrics. For these
reasons, we feel that these very impressive European datasets set a new benchmark in data
exploration in this area. Several features in the present analysis point to a very high-level of
significance, including vanishingly low p-values, minimum E-values ranging to infinity and
relatively large sets of data. Moreover, all multivariable models utilised inverse-probability
weighting, which, as noted, transforms models from merely observational context to a
pseudo-randomised context where causal inferences may properly be drawn. A clear
concordance between the European and American datasets is described in Section 4.6.
Together, these factors of large and rich datasets, high-level significance and positive
results on causal inferential analysis for many cancers suggest that, indeed, such results
are likely to be widely generalizable internationally wherever reliable data exist on the
relevant covariates.

4.19. Strengths and Limitations

This study has a number of strengths and limitations. Study strengths include the
availability of continent-wide data or cancers and for drug and substance exposures alike.
We were also fortunate to obtain access to a very long time series of cancer case rates
covering 21 years. We were also able to access current data on cancer rates in Europe
for many national registries. We were also able to access newly re-presented datasets
on European cannabis exposure by many metrics as described recently in the study by
Manthey and colleagues of the EMCDDA database [111]. Analytical strengths included
the use of the quantitative techniques of causal analysis, particularly inverse-probability
weighing and E-values to move beyond simply an observational ecological study and
begin to address important causal questions in a pseudo-randomised framework. Utilising
panel regression for multivariable adjustment carried several advantages—including that
time and place can be accounted for intrinsic to the model structure without having to be
specified in the model formula—so that their model standard deviation could be used to
calculate E-values, they could be inverse-probability-weighted, they could be temporally
lagged, and so that comparable models could be run across all tumour types virtually
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simultaneously in a purr–map workflow. The ability to display trends for all 40 cancers in
one figure or table was also a notable strength.

Limitations of our study arise from several considerations. In common with most
epidemiological studies, detailed information on personal cannabis exposure was not
available to the present investigators. An interpolation of time series data was performed
for the drug exposures to complete missing datasets in the manner described. Other
methods of accounting for missing data, including multiple imputation, exist but are not
suitable for the kinds of advanced analyses which were required in this study. For these
reasons, it is important that future efforts work towards completing these gaps in the
substance exposure data. We readily accept that in a very rich dataset, there are many ways
to analyse such detailed data resources. Data also lend themselves to formal geospatial
analyses where spatial networks are formally considered. This is a large project which will
have to await subsequent dedicated analyses. In accordance with standard public health
practice, we also examined only the positive signals in our data. Investigating negative
signals is a project which must await a future opportunity. Finally, it is also of interest to
study rarer cancers in greater depth. Such a project must await a future opportunity to
accrue the requisite data for these malignancies, which may potentially offer key insights
into cannabinoid-related oncogenic mechanisms.

5. Conclusions

In summary, this study demonstrates that cannabis exposure is linked across both time
and space with the incidence of 25 of 41 cancers in Europe and thus confirms findings on
other continents [17,41,44,167–169,211,212]. On epidemiological grounds, cannabis appears
to be a more potent carcinogen than tobacco or alcohol in most tabulations, and based
on E-value criteria, is a more potent carcinogen that tobacco and alcohol combined. It is
important to note that the use of adjustment for multiple testing throughout these studies,
the use of inverse-probability weighting in multivariable regressions and the use of E-values
in bivariate and multivariable regressions move the present consideration merely from an
extended report of various associations to a detailed investigation of causal relationships.
All four questions considered in the Introductory Section have been answered in the
affirmative in relation to the carcinogenic potential of cannabis at the level of population
health, in concordance with the results of similar studies in North America, increased
carcinogenic effects compared to known carcinogens tobacco and alcohol (often combined)
and its implication in inheritable tumorigenesis and toxicity to multiple reproductive organs
on several grounds. Together with recent findings demonstrating that cannabis exposure
has driven a doubling of the US testicular cancer rate as well as rising US breast cancer rates,
has increased the paediatric cancer rate in the USA by 50% in the last fifty years and also
appears in the context of other mutagenic exposures to be driving current impressive and
very concerning trends in pancreatic and liver cancer, the conclusion that the tumourigenic
potential of cannabinoids has been seriously underestimated by the medical, scientific,
professional and lay communities alike becomes inescapable. The present results strongly
reinforce all of these worrying findings. It would appear that based on results such as
those in the present study and of comparable similar studies in North America, a plethora
of carcinogenic mechanisms outlined by the basic sciences particularly recent impressive
epigenomic studies, the seriously concerning issue of transgenerational mutagenicity
and malignant teratogenicity, the known exponential dose–response relationships and
the implication of multiple cannabinoids, that communities need to severely restrict the
exposure of their citizenry to environmental carcinogens such as cannabinoids not only in
the interests of public health and safety, but also in order to protect the genomic, epigenomic
and neurodevelopmental potential of several generations to come.
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E-value Expected Value
IARC International Association Against Cancer
IPW Inverse-Probability Weighting
mEV Minimum E-value
PAF Population Attributable Fraction
P-FDR p-value Corrected for False Discovery Rate
PR Prevalence Ratio
THC ∆9-Tetrahydrocannabinol
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